
Verilog-to-Routing Documentation
Release 8.1.0-dev

VTR Developers

Jun 11, 2020





QUICK START

1 VTR Quick Start 3
1.1 Setting Up VTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Running VPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Running the VTR Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Next Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Building VTR 17
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Tested Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Unix-like . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Other platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 VTR 23
3.1 VTR CAD Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Get VTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Install VTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Running the VTR Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Power Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.8 run_vtr_flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.9 run_vtr_task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.10 parse_vtr_flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.11 parse_vtr_task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.12 Parse Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.13 Pass Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 FPGA Architecture Description 57
4.1 Architecture Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Example Architecture Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 VPR 131
5.1 Basic flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.2 Command-line Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.3 Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.4 Timing Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.5 SDC Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.6 File Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
5.7 Debugging Aids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6 Odin II 195

i



6.1 INSTALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
6.2 USAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.3 DOCUMENTING ODIN II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.4 TESTING ODIN II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.5 USING MODELSIM TO TEST ODIN II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.6 CONTACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7 ABC 203

8 Tutorials 205
8.1 Design Flow Tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
8.2 Architecture Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
8.3 Running the Titan Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
8.4 Post-Implementation Timing Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

9 Utilities 271
9.1 FPGA Assembly (FASM) Output Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
9.2 Router Diagnosis Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

10 Developer Guide 277
10.1 Contribution Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
10.2 Commit Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
10.3 Commit Messages and Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
10.4 Code Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
10.5 Running Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
10.6 Debugging Failed Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
10.7 Evaluating Quality of Result (QoR) Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
10.8 Adding Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
10.9 Debugging Aids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
10.10 Speeding up the edit-compile-test cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
10.11 Speeding Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
10.12 External Subtrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
10.13 Finding Bugs with Coverity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
10.14 Release Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
10.15 Developer Tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
10.16 VTR Support Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
10.17 VTR License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

11 VTR Change Log 311
11.1 Unreleased . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
11.2 v8.0.0 - 2020-03-24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
11.3 v8.0.0-rc2 - 2019-08-01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
11.4 v8.0.0-rc1 - 2019-06-13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

12 Contact 317
12.1 Mailing Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
12.2 Issue Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

13 Glossary 319

14 Publications & References 321

15 Indices and tables 323

Bibliography 325

ii



Index 329

iii



iv



Verilog-to-Routing Documentation, Release 8.1.0-dev

Form more information on the Verilog-to-Routing (VTR) project see VTR and VTR CAD Flow.

For documentation and tutorials on the FPGA architecture description langauge see: FPGA Architecture Description.

For more specific documentation about VPR see VPR.
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2 QUICK START



CHAPTER

ONE

VTR QUICK START

This is a quick introduction to VTR which covers how to run VTR and some if its associated tools (VPR, Odin II,
ABC).

1.1 Setting Up VTR

1.1.1 Download VTR

The first step is to download VTR and extract VTR on your local machine.

Note: Developers planning to modify VTR should clone the VTR git repository.

1.1.2 Build VTR

On most unix-like systems you can run:

> make

from the VTR root directory (hereafter referred to as $VTR_ROOT) to build VTR.

Note: In the VTR documentation lines starting with > (like > make above), indicate a command (i.e. make) to run
from your terminal. When the \ symbol appears at the end of a line, it indicates line continuation.

Note: $VTR_ROOT refers to the root directory of the VTR project source tree. To run the examples in this guide on
your machine, either:

• define VTR_ROOT as a variable in your shell (e.g. if ~/trees/vtr is the path to the VTR source tree on
your machine, run the equivalent of VTR_ROOT=~/trees/vtr in BASH) which will allow you to run the
commands as written in this guide, or

• manually replace $VTR_ROOT in the example commandss below with your path to the VTR source tree.

Note: If VTR fails to build you may need to install the required dependencies.

For more details on building VTR on various operating systems/platforms see Building VTR.

3
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1.2 Running VPR

Lets now try taking a simple pre-synthesized circuit (consisting of LUTs and Flip-Flops) and use the VPR tool to
implement it on a specific FPGA architecture.

1.2.1 Running VPR on a Pre-Synthesized Circuit

First, lets make a directory in our home directory where we can work:

#Move to our home directory
> cd ~

#Make a working directory
> mkdir -p vtr_work/quickstart/vpr_tseng

#Move into the working directory
> cd ~/vtr_work/quickstart/vpr_tseng

Now, lets invoke the VPR tool to implement:

• the tseng circuit ($VTR_ROOT/vtr_flow/benchmarks/blif/tseng.blif), on

• the EArch FPGA architecture ($VTR_ROOT/vtr_flow/arch/timing/EArch.xml).

We do this by passing these files to the VPR tool, and also specifying that we want to route the circuit on a version of
EArch with a routing architecture channel width of 100 (--route_chan_wdith 100):

> $VTR_ROOT/vpr/vpr \
$VTR_ROOT/vtr_flow/arch/timing/EArch.xml \
$VTR_ROOT/vtr_flow/benchmarks/blif/tseng.blif \
--route_chan_width 100

This will produce a large amount of output as VPR implements the circuit, but you should see something similar to:

VPR FPGA Placement and Routing.
Version: 8.1.0-dev+2b5807ecf
Revision: v8.0.0-1821-g2b5807ecf
Compiled: 2020-05-21T16:39:33
Compiler: GNU 7.3.0 on Linux-4.15.0-20-generic x86_64
Build Info: release VTR_ASSERT_LEVEL=2

University of Toronto
verilogtorouting.org
vtr-users@googlegroups.com
This is free open source code under MIT license.

#
#Lots of output trimmed for brevity....
#

Geometric mean non-virtual intra-domain period: 6.22409 ns (160.666 MHz)
Fanout-weighted geomean non-virtual intra-domain period: 6.22409 ns (160.666 MHz)

VPR suceeded
The entire flow of VPR took 3.37 seconds (max_rss 40.7 MiB)

4 Chapter 1. VTR Quick Start
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which shows that VPR as successful (VPR suceeded), along with how long VPR took to run (~3 seconds in this
case).

You will also see various result files generated by VPR which define the circuit implementation:

> ls *.net *.place *.route

tseng.net tseng.place tseng.route

along with a VPR log file which contains what VPR printed when last invoked:

> ls *.log

vpr_stdout.log

and various report files describing the characteristics of the implementation:

> ls *.rpt

packing_pin_util.rpt report_timing.hold.rpt report_unconstrained_
→˓timing.hold.rpt
pre_pack.report_timing.setup.rpt report_timing.setup.rpt report_unconstrained_
→˓timing.setup.rpt

1.2.2 Visualizaing Circuit Implementation

Note: This section requires that VPR was compiled with graphic support. See VPR Graphics for details.

The .net, .place and .route files (along with the input .blif and architecture .xml files) fully defined the
circuit implementation. We can visualize the circuit implementation by:

• Re-running VPR’s analysis stage (--analysis), and

• enabling VPR’s graphical user interface (--disp on).

This is done by running the following:

> $VTR_ROOT/vpr/vpr \
$VTR_ROOT/vtr_flow/arch/timing/EArch.xml \
$VTR_ROOT/vtr_flow/benchmarks/blif/tseng.blif \
--route_chan_width 100 \
--analysis --disp on

which should open the VPR graphics and allow you to explore the circuit implementation.

As an exercise try the following:

• View the connectivity of a block (connections which drive it, and those which it drives)

• View the internals of a logic block (e.g. try to find the LUTs/.names and Flip-Flops/.latch)

• Visualize all the routed circuit connections

See also:

For more details on the various graphics options, see VPR Graphics

1.2. Running VPR 5
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Fig. 1.1: Routed net connections of tseng on EArch.

6 Chapter 1. VTR Quick Start
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Fig. 1.2: Input (blue)/output (red) nets of block n_n3199 (highlighted green).

1.2. Running VPR 7
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Note: If you do not provide --analysis, VPR will re-implement the circuit from scratch. If you also specify
--disp on, you can see how VPR modifies the implementation as it runs. By default --disp on stops at key
stages to allow you to view and explore the implementation. You will need to press the Proceed button in the GUI
to allow VPR to continue to the next stage.

1.3 Running the VTR Flow

In the previous section we have implemented a pre-synthesized circuit onto a pre-existing FPGA architecture using
VPR, and visualized the result. We now turn to how we can implement our own circuit on a pre-existing FPGA
architecture.

To do this we begin by describing a circuit behaviourly using the Verilog Hardware Description Language (HDL).
This allows us to quickly and consisely define the circuit’s behaviour. We will then use the VTR Flow to synthesize
the behavioural Verilog description it into a circuit netlist, and implement it onto an FPGA.

1.3.1 Example Circuit

We will use the following simple example circuit, which causes it’s output to toggle on and off:

Listing 1.1: blink.v ($VTR_ROOT/doc/src/quickstart/
blink.v)

1 //A simple cricuit which blinks an LED on and off periodically
2 module blink(
3 input clk, //Input clock
4 input i_reset, //Input active-high reset
5 output o_led); //Output to LED
6

7 //Sequential logic
8 //
9 //A reset-able counter which increments each clock cycle

10 reg[4:0] r_counter;
11 always @(posedge clk) begin
12 if (i_reset) begin //When reset is high, clear counter
13 r_counter <= 5'd0;
14 end else begin //Otherwise increment counter each clock (note that it will

→˓overflow back to zero)
15 r_counter <= r_counter + 1'b1;
16 end
17 end
18

19 //Combinational logic
20 //
21 //Drives o_led high if count is below a threshold
22 always @(*) begin
23 if (r_counter < 5'd16) begin
24 o_led <= 1'b1;
25 end else begin
26 o_led <= 1'b0;
27 end
28 end

(continues on next page)

8 Chapter 1. VTR Quick Start
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(continued from previous page)

29

30 endmodule

This Verilog creates a sequential 5-bit register (r_counter) which increments every clock cycle. If the count is
below 16 it drives the output (o_led) high, otherwise it drives it low.

1.3.2 Manually Running the VTR Flow

Lets start by making a fresh directory for us to work in:

> mkdir -p ~/vtr_work/quickstart/blink_manual
> cd ~/vtr_work/quickstart/blink_manual

Next we need to run the three main sets of tools:

• Odin II performs ‘synthesis’ which converts our behavioural Verilog (.v file) into a circuit netlist (.blif file)
consisting of logic equations and FPGA architecture primitives (Flip-Flops, adders etc.),

• ABC performs ‘logic optimization’ which simplifies the circuit logic, and ‘technology mapping’ which converts
logic equations into the Look-Up-Tables (LUTs) available on an FPGA, and

• VPR which performs packing, placement and routing of the circuit to implement it on the targetted FPGA
architecture.

Synthesizing with ODIN II

First we’ll run ODIN II on our Verilog file to synthesize it into a circuit netlist, providing the options:

• -a $VTR_ROOT/vtr_flow/arch/timing/EArch.xml which specifies what FPGA architecture we
are targetting,

• -V $VTR_ROOT/doc/src/quickstart/blink.v which specifies the verilog file we want to synthe-
size, and

• -o blink.odin.blif which specifies the name of the generated .blif circuit netlist.

The resulting command is:

> $VTR_ROOT/ODIN_II/odin_II \
-a $VTR_ROOT/vtr_flow/arch/timing/EArch.xml \
-V $VTR_ROOT/doc/src/quickstart/blink.v \
-o blink.odin.blif

which when run should end with something like:

Total time: 14.7ms
Odin ran with exit status: 0
Odin II took 0.01 seconds (max_rss 5.1 MiB)

where Odin ran with exit status: 0 indicates Odin successfully synthesized our verilog.

We can now take a look at the circuit which ODIN produced (blink.odin.blif). The file is long and likely harder
to follow than our code in blink.v; however it implements the same functionality. Some interesting highlights are
shown below:

1.3. Running the VTR Flow 9
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Listing 1.2: Instantiations of rising-edge triggered Latches (i.e. Flip-
Flops) in blink.odin.blif (implements part of r_counter in
blink.v)

.latch blink^nMUX~0^MUX_2~23 blink^r_counter~0_FF re blink^clk 3

.latch blink^nMUX~0^MUX_2~27 blink^r_counter~4_FF re blink^clk 3

Listing 1.3: Adder primitive instantiations in blink.odin.blif,
used to perform addition (implements part of the + operator in blink.v)

.subckt adder a[0]=blink^r_counter~0_FF b[0]=vcc cin[0]=blink^ADD~2-0[0]\
cout[0]=blink^ADD~2-1[0] sumout[0]=blink^ADD~2-1[1]

.subckt adder a[0]=blink^r_counter~1_FF b[0]=gnd cin[0]=blink^ADD~2-1[0]\
cout[0]=blink^ADD~2-2[0] sumout[0]=blink^ADD~2-2[1]

Listing 1.4: Logic equation (.names truth-table) in blink.odin.
blif, implementing logical OR (implements part of the < operator in
blink.v)

.names blink^LT~4^GT~10 blink^LT~4^GT~12 blink^LT~4^GT~14 blink^LT~4^GT~16 blink^LT~4^
→˓GT~18 blink^LT~4^lOR~9
1---- 1
-1--- 1
--1-- 1
---1- 1
----1 1

See also:

For more information on the BLIF file format see BLIF Netlist (.blif).

Optimizing and Technology Mapping with ABC

Next, we’ll optimize and technology map our circuit using ABC, providing the option:

• -c <script>, where <script> is a set of commands telling ABC how to synthesize our circuit.

We’ll use the following, simple ABC commands:

read blink.odin.blif; #Read the circuit synthesized by
→˓ODIN
if -K 6; #Technology map to 6 input LUTs
→˓(6-LUTs)
write_hie blink.odin.blif blink.abc_no_clock.blif #Write new circuit to blink.abc_
→˓no_clock.blif

Note: Usually you should use a more complicated script (such as that used by run_vtr_flow) to ensure ABC optitmizes
your circuit well.

The corresponding command to run is:

> $VTR_ROOT/abc/abc \
-c 'read blink.odin.blif; if -K 6; write_hie blink.odin.blif blink.abc_no_clock.

→˓blif' (continues on next page)

10 Chapter 1. VTR Quick Start



Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

When run, ABC’s output should look similar to:

ABC command line: "read blink.odin.blif; if -K 6; write_hie blink.odin.blif blink.abc_
→˓no_clock.blif".

Hierarchy reader converted 6 instances of blackboxes.
The network was strashed and balanced before FPGA mapping.
Hierarchy writer reintroduced 6 instances of blackboxes.

If we now inspect the produced BLIF file (blink.abc_no_clock.blif) we see that ABC was able to signifi-
cantly simplify and optimize the circuit’s logic (compared to blink.odin.blif):

Listing 1.5: blink.abc_no_clock.blif

1 # Benchmark "blink" written by ABC on Tue May 19 15:42:50 2020
2 .model blink
3 .inputs blink^clk blink^i_reset
4 .outputs blink^o_led
5

6 .latch n19 blink^r_counter~0_FF 2
7 .latch n24 blink^r_counter~4_FF 2
8 .latch n29 blink^r_counter~3_FF 2
9 .latch n34 blink^r_counter~2_FF 2

10 .latch n39 blink^r_counter~1_FF 2
11

12

13 .subckt adder a[0]=blink^r_counter~0_FF b[0]=vcc cin[0]=blink^ADD~2-0[0]
→˓cout[0]=blink^ADD~2-1[0] sumout[0]=blink^ADD~2-1[1]

14 .subckt adder a[0]=blink^r_counter~1_FF b[0]=gnd cin[0]=blink^ADD~2-1[0]
→˓cout[0]=blink^ADD~2-2[0] sumout[0]=blink^ADD~2-2[1]

15 .subckt adder a[0]=blink^r_counter~2_FF b[0]=gnd cin[0]=blink^ADD~2-2[0]
→˓cout[0]=blink^ADD~2-3[0] sumout[0]=blink^ADD~2-3[1]

16 .subckt adder a[0]=blink^r_counter~3_FF b[0]=gnd cin[0]=blink^ADD~2-3[0]
→˓cout[0]=blink^ADD~2-4[0] sumout[0]=blink^ADD~2-4[1]

17 .subckt adder a[0]=blink^r_counter~4_FF b[0]=gnd cin[0]=blink^ADD~2-4[0]
→˓cout[0]=blink^ADD~2-5[0] sumout[0]=blink^ADD~2-5[1]

18 .subckt adder a[0]=gnd b[0]=gnd cin[0]=unconn cout[0]=blink^ADD~2-0[0]
→˓sumout[0]=blink^ADD~2-0~dummy_output~0~1

19

20

21 .names blink^i_reset blink^ADD~2-1[1] n19
22 01 1
23 .names blink^i_reset blink^ADD~2-5[1] n24
24 01 1
25 .names blink^i_reset blink^ADD~2-4[1] n29
26 01 1
27 .names blink^i_reset blink^ADD~2-3[1] n34
28 01 1
29 .names blink^i_reset blink^ADD~2-2[1] n39
30 01 1
31 .names vcc
32 1
33 .names gnd
34 0
35 .names unconn

(continues on next page)
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(continued from previous page)

36 0
37 .names blink^r_counter~4_FF blink^o_led
38 0 1
39 .end
40

41

42 .model adder
43 .inputs a[0] b[0] cin[0]
44 .outputs cout[0] sumout[0]
45 .blackbox
46 .end

ABC has kept the .latch and .subckt adder primitives, but has significantly simplified the other logic (.
names).

However, there is an issue with the above BLIF produced by ABC: the latches (rising edge Flip-Flops) do not have
any clocks or edge sensitivity specified, which is information required by VPR.

Re-inserting clocks

We will restore the clock information by running a script which will transfer that information from the original ODIN
BLIF file (writing it to the new file blink.pre-vpr.blif):

> $VTR_ROOT/vtr_flow/scripts/restore_multiclock_latch.pl \
blink.odin.blif \
blink.abc_no_clock.blif \
blink.pre-vpr.blif

If we inspect blink.pre-vpr.blif we now see that the clock (blink^clk) has been restored to the Flip-Flops:

> grep 'latch' blink.pre-vpr.blif

.latch n19 blink^r_counter~0_FF re blink^clk 3

.latch n24 blink^r_counter~4_FF re blink^clk 3

.latch n29 blink^r_counter~3_FF re blink^clk 3

.latch n34 blink^r_counter~2_FF re blink^clk 3

.latch n39 blink^r_counter~1_FF re blink^clk 3

Implementing the circuit with VPR

Now that we have the optimized and technology mapped netlist (blink.pre-vpr.blif), we can invoke VPR to
implement it onto the EArch FPGA architecture (in the same way we did with the tseng design earlier). However,
since our BLIF file doesn’t match the design name we explicitly specify:

• blink as the circuit name, and

• the input circuit file with --circuit_file.

to ensure the resulting .net, .place and .route files will have the correct names.

The resulting command is:

> $VTR_ROOT/vpr/vpr \
$VTR_ROOT/vtr_flow/arch/timing/EArch.xml \

(continues on next page)
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(continued from previous page)

blink --circuit_file blink.pre-vpr.blif \
--route_chan_width 100

and after VPR finishes we should see the resulting implementation files:

> ls *.net *.place *.route

blink.net blink.place blink.route

We can then view the implementation as usual by appending --analysis --disp on to the command:

> $VTR_ROOT/vpr/vpr \
$VTR_ROOT/vtr_flow/arch/timing/EArch.xml \
blink --circuit_file blink.pre-vpr.blif \
--route_chan_width 100 \
--analysis --disp on

Fig. 1.3: blink.v circuit implementation on the EArch FPGA architecture as viewed in the VPR GUI

1.3. Running the VTR Flow 13



Verilog-to-Routing Documentation, Release 8.1.0-dev

1.3.3 Automatically Running the VTR Flow

Running each stage of the flow manually is time consuming (and potentially error prone). For convenience, VTR
provides a script (run_vtr_flow) which automates this process.

Lets make a new directory to work in named blink_run_flow:

> mkdir -p ~/vtr_work/quickstart/blink_run_flow
> cd ~/vtr_work/quickstart/blink_run_flow

Now lets run the script ($VTR_ROOT/vtr_flow/scripts/run_vtr_flow.pl) passing in:

• The circuit verilog file ($VTR_ROOT/doc/src/quickstart/blink.v)

• The FPGA architecture file ($VTR_ROOT/vtr_flow/arch/timing/EArch.xml)

and also specifying the options:

• -temp_dir . to run in the current directory (. on unix-like systems)

• --route_chan_width 100 a fixed FPGA routing architecture channel width.

The resulting command is:

> $VTR_ROOT/vtr_flow/scripts/run_vtr_flow.pl \
$VTR_ROOT/doc/src/quickstart/blink.v \
$VTR_ROOT/vtr_flow/arch/timing/EArch.xml \
-temp_dir . \
--route_chan_width 100

Note: Options unrecognized by run_vtr_flow (like --route_chan_width) are passed on to VPR.

which should produce output similar to:

EArch/blink OK (took 0.26 seconds)

There are also multiple log files (including for ABC, ODIN and VPR), which by convention the script names with the
.out suffix:

> ls *.out

0_blackboxing_latch.out odin.out report_clocks.abc.out vanilla_restore_
→˓clocks.out
abc0.out report_clk.out restore_latch0.out vpr.out

With the main log files of interest including the ODIN log file (odin.out), log files produced by ABC (e.g. abc0.
out), and the VPR log file (vpr.out).

Note: ABC may be invoked multiple times if a circuit has multiple clock domains, producing multiple log files
(abc0.out, abc1.out, . . . )

You will also see there are several BLIF files produced:

> ls *.blif

0_blink.abc.blif 0_blink.raw.abc.blif blink.odin.blif
0_blink.odin.blif blink.abc.blif blink.pre-vpr.blif
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With the main files of interest being blink.odin.blif (netlist produced by ODIN), blink.abc.blif (final
netlist produced by ABC after clock restoration), blink.pre-vpr.blif netlist used by VPR (usually identical to
blink.abc.blif).

Like before, we can also see the implementation files generated by VPR:

> ls *.net *.place *.route

blink.net blink.place blink.route

which we can visualize with:

> $VTR_ROOT/vpr/vpr \
$VTR_ROOT/vtr_flow/arch/timing/EArch.xml \
blink --circuit_file blink.pre-vpr.blif \
--route_chan_width 100 \
--analysis --disp on

1.4 Next Steps

Now that you’ve finished the VTR quickstart, you’re ready to start experimenting and using VTR.

Here are some possible next steps for users wishing to use VTR:

• Try modifying the Verilog file (e.g. blink.v) or make your own circuit and try running it through the flow.

• Learn about FPGA architecture modelling (Tutorials, Reference), and try modifying a copy of EArch to see
how it changes the implementation of blink.v.

• Read more about the VTR CAD Flow, and Task automation framework.

• Find out more about using other benchmark sets, like how to run the Titan Benchmark Suite.

• Discover how to generate FASM for bitstream creation.

• Suggest or make enhancements to VTR’s documentation.

Here are some possible next steps for developers wishing to modify and improve VTR:

• Try the next steps listed for users above to learn how VTR is used.

• Work through the new developer tutorial.

• Read through the developer guide.

• Look for open issues to which you can contribute.

• Begin exploring the source code for the main tools in VTR (e.g. VPR in $VTR_ROOT/vpr/src).

1.4. Next Steps 15
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CHAPTER

TWO

BUILDING VTR

2.1 Overview

VTR uses CMake as it’s build system.

CMake provides a portable cross-platform build systems with many useful features.

2.2 Tested Compilers

VTR requires a C++-14 compliant compiler. The following compilers are tested with VTR:

• GCC/G++: 5, 6, 7, 8, 9

• Clang/Clang++: 3.8, 6

Other compilers may work but are untested (your milage may vary).

2.3 Unix-like

For unix-like systems we provide a wrapper Makefile which supports the traditional make and make clean com-
mands, but calls CMake behind the scenes.

2.3.1 Dependencies

For the basic tools you need:

• Bison & Flex

• cmake, make

• A modern C++ compiler supporting C++14 (such as GCC >= 4.9 or clang >= 3.6)

For the VPR GUI you need:

• Cairo

• FreeType

• Xft (libXft + libX11)

• fontconfig

• libgtk-3-dev

17
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For the regression testing and benchmarking you will need:

• Perl + List::MoreUtils

• Python

• time

It is also recommended you install the following development tools:

• git

• ctags

• gdb

• valgrind

• clang-format-7

For Docs generation you will need:

• Doxygen

• python-sphinx

• python-sphinx-rtd-theme

• python-recommonmark

Debian & Ubuntu

The following should be enough to get the tools, VPR GUI and tests going on a modern Debian or Ubuntu system:

apt-get install \
build-essential \
flex \
bison \
cmake \
fontconfig \
libcairo2-dev \
libfontconfig1-dev \
libx11-dev \
libxft-dev \
libgtk-3-dev \
perl \
liblist-moreutils-perl \
python \
time

For documentation generation these additional packages are required:

apt-get install \
doxygen \
python-sphinx \
python-sphinx-rtd-theme \
python-recommonmark

For development the following additional packages are useful:

18 Chapter 2. Building VTR
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apt-get install \
git \
valgrind \
gdb \
ctags

Using Nix

Although the recommended platform is Debian or Ubuntu, Nix can be used to build VTR on other platforms, such as
MacOS.

If you don’t have Nix, you can get it with:

$ curl -L https://nixos.org/nix/install | sh

These commands will set up dependencies for Linux and MacOS and build VTR:

#In the VTR root
$ nix-shell dev/nix/shell.nix
$ make

2.3.2 Building using the Makefile wrapper

Run make from the root of the VTR source tree

#In the VTR root
$ make
...
[100%] Built target vpr

Specifying the build type

You can specify the build type by passing the BUILD_TYPE parameter.

For instance to create a debug build (no optimization and debug symbols):

#In the VTR root
$ make BUILD_TYPE=debug
...
[100%] Built target vpr

Passing parameters to CMake

You can also pass parameters to CMake.

For instance to set the CMake configuration variable VTR_ENABLE_SANITIZE on:

#In the VTR root
$ make CMAKE_PARAMS="-DVTR_ENABLE_SANITIZE=ON"
...
[100%] Built target vpr

Both the BUILD_TYPE and CMAKE_PARAMS can be specified concurrently:
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#In the VTR root
$ make BUILD_TYPE=debug CMAKE_PARAMS="-DVTR_ENABLE_SANITIZE=ON"
...
[100%] Built target vpr

2.3.3 Using CMake directly

You can also use cmake directly.

First create a build directory under the VTR root:

#In the VTR root
$ mkdir build
$ cd build

#Call cmake pointing to the directory containing the root CMakeLists.txt
$ cmake ..

#Build
$ make

Changing configuration on the command line

You can change the CMake configuration by passing command line parameters.

For instance to set the configuration to debug:

#In the build directory
$ cmake . -DCMAKE_BUILD_TYPE=debug

#Re-build
$ make

Changing configuration interactively with ccmake

You can also use ccmake to to modify the build configuration.

#From the build directory
$ ccmake . #Make some configuration change

#Build
$ make
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2.4 Other platforms

CMake supports a variety of operating systems and can generate project files for a variety of build systems and
IDEs. While VTR is developed primarily on Linux, it should be possible to build on different platforms (your milage
may vary). See the CMake documentation for more details about using cmake and generating project files on other
platforms and build systems (e.g. Eclipse, Microsoft Visual Studio).

2.4.1 Microsoft Windows

NOTE: VTR support on Microsoft Windows is considered experimental

Cygwin

Cygwin provides a POSIX (i.e. unix-like) environment for Microsoft Windows.

From within the cygwin terminal follow the Unix-like build instructions listed above.

Note that the generated executables will rely upon Cygwin (e.g. cygwin1.dll) for POSIX compatibility.

Cross-compiling from Linux to Microsoft Windows with MinGW-W64

It is possible to cross-compile from a Linux host system to generate Microsoft Windows executables using the MinGW-
W64 compilers. These can usually be installed with your Linux distribution’s package manager (e.g. sudo apt-get
install mingw-w64 on Debian/Ubuntu).

Unlike Cygwin, MinGW executables will depend upon the standard Microsoft Visual C++ run-time.

To build VTR using MinGW:

#In the VTR root
$ mkdir build_win64
$ cd build_win64

#Run cmake specifying the toolchain file to setup the cross-compilation environment
$ cmake .. -DCMAKE_TOOLCHAIN_FILE ../cmake/toolchains/mingw-linux-cross-compile-to-
→˓windows.cmake

#Building will produce Windows executables
$ make

Note that by default the MS Windows target system will need to dynamically link to the libgcc and libstdc++
DLLs. These are usually found under /usr/lib/gcc on the Linux host machine.

See the toolchain file for more details.
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Microsoft Visual Studio

CMake can generate a Microsft Visual Studio project, enabling VTR to be built with the Microsoft Visual C++
(MSVC) compiler.

Installing additional tools

VTR depends on some external unix-style tools during it’s buid process; in particular the flex and bison parser
generators.

One approach is to install these tools using MSYS2, which provides up-to-date versions of many unix tools for MS
Windows.

To ensure CMake can find the flex and bison executables you must ensure that they are available on your system
path. For instance, if MSYS2 was installed to C:\msys64 you would need to ensure that C:\msys64\usr\bin
was included in the system PATH environment variable.

Generating the Visual Studio Project

CMake (e.g. the cmake-gui) can then be configured to generate the MSVC project.
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CHAPTER

THREE

VTR

The Verilog-to-Routing (VTR) project [RLY+12][LAK+14] is a world-wide collaborative effort to provide a open-
source framework for conducting FPGA architecture and CAD research and development. The VTR design flow takes
as input a Verilog description of a digital circuit, and a description of the target FPGA architecture.

It then perfoms:

• Elaboration & Synthesis (Odin II)

• Logic Optimization & Technology Mapping (ABC)

• Packing, Placement, Routing & Timing Analysis (VPR)

Generating FPGA speed and area results.

VTR also includes a set of benchmark designs known to work with the design flow.

3.1 VTR CAD Flow

In the standard VTR Flow (Fig. 3.1), Odin II converts a Verilog Hardware Destription Language (HDL) design into
a flattened netlist consisting of logic gates, flip-flops, and blackboxes representing heterogeneous blocks (e.g. adders,
multipliers, RAM slices) [JKGS10].

Next, the ABC synthesis package is used to perform technology-independent logic optimization, and technology-maps
the circuit into LUTs [SG][PHMB07][CCMB07]. The output of ABC is a .blif format netlist of LUTs, flip flops, and
blackboxes.

VPR then packs this netlist into more coarse-grained logic blocks, places and then routes the circuit
[BRM99][Bet98][BR96a][BR96b][BR97b][BR97a][MBR99][MBR00][BR00]. Generating output files for each
stage. VPR will analyze the resulting implementation, producing various statistics such as the minimum number
of tracks per channel required to successfully route, the total wirelength, circuit speed, area and power. VPR can also
produce a post-implementation netlist for simulation and formal verification.
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Fig. 3.1: VTR CAD flow (and variants)

24 Chapter 3. VTR



Verilog-to-Routing Documentation, Release 8.1.0-dev

3.1.1 CAD Flow Variations

Titan CAD Flow

The Titan CAD Flow [MWL+13][MWL+15] interfaces Intel’s Quartus tool with VPR. This allows designs requiring
industrial strength language coverage and IP to be brought into VPR.

Other CAD Flow Variants

Many other CAD flow variations are possible.

For instance, it is possible to use other logic synthesis tools like Yosys [Wol] to generate the design netlist. One could
also use logic optimizers and technology mappers other than ABC; just put the output netlist from your technology-
mapper into .blif format and pass it into VPR.

It is also possible to use tools other than VPR to perform the different stages of the implementation.

For example, if the logic block you are interested in is not supported by VPR, your CAD flow can bypass VPR’s packer
by outputting a netlist of logic blocks in .net format. VPR can place and route netlists of any type of logic block – you
simply have to create the netlist and describe the logic block in the FPGA architecture description file.

Similarly, if you want only to route a placement produced by another CAD tool you can create a .place file, and have
VPR route this pre-existing placement.

If you only need to analyze an implementation produced by another tool, you can create a .route file, and have VPR
analyze the implementation, to produce area/delay/power results.

Finally, if your routing architecture is not supported by VPR’s architecture generator, you can describe your routing
architecture in an rr_graph.xml file, which can be loaded directly into VPR.

3.1.2 Bitstream Generation

The technology mapped netlist and packing/placement/routing results produced by VPR contain the information
needed to generate a device programming bitstreams.

VTR focuses on the core physical design optimization tools and evaluation capabilities for new architectures and does
not directly support generating device programming bitstreams. Bitstream generators can either ingest the implemen-
tation files directly or make use of VTR utilities to emit FASM.

3.2 Get VTR

3.2.1 How to Cite

Citations are important in academia, as they ensure contributors recieve credit for their efforts. Therefore please use
the following paper as a general citation whenever you use VTR:

K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. ElDafrawy, J.-P. Legault, E. Sha, A. G. Graham, J. Wu,
M. J. P. Walker, H. Zeng, P. Patros, J. Luu, K. B. Kent and V. Betz “VTR 8: High Performance CAD and
Customizable FPGA Architecture Modelling”, ACM TRETS, 2020

Bibtex:
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@article{vtr8,
title={VTR 8: High Performance CAD and Customizable FPGA Architecture Modelling},
author={Murray, Kevin E. and Petelin, Oleg and Zhong, Sheng and Wang, Jai Min and

→˓ElDafrawy, Mohamed and Legault, Jean-Philippe and Sha, Eugene and Graham, Aaron G.
→˓and Wu, Jean and Walker, Matthew J. P. and Zeng, Hanqing and Patros, Panagiotis and
→˓Luu, Jason and Kent, Kenneth B. and Betz, Vaughn},
journal={ACM Trans. Reconfigurable Technol. Syst.},
year={2020}

}

We are always interested in how VTR is being used, so feel free email the vtr-users list with how you are using VTR.

3.2.2 Download

The official VTR release is available from:

https://verilogtorouting.org/download

3.2.3 Release

The VTR 8.1 release provides the following:

• benchmark circuits,

• sample FPGA architecture description files,

• the full CAD flow, and

• scripts to run that flow.

The FPGA CAD flow takes as input, a user circuit (coded in Verilog) and a description of the FPGA architecture. The
CAD flow then maps the circuit to the FPGA architecture to produce, as output, a placed-and-routed FPGA. Here are
some highlights of the 8.1 full release:

• Timing-driven logic synthesis, packing, placement, and routing with multi-clock support.

• Power Analysis

• Benchmark digital circuits consisting of real applications that contain both memories and multipliers.

Seven of the 19 circuits contain more than 10,000 6-LUTs. The largest of which is just under 100,000 6-LUTs.

• Sample architecture files of a wide range of different FPGA architectures including:

1. Timing annotated architectures

2. Various fracturable LUTs (dual-output LUTs that can function as one large LUT or two smaller LUTs with
some shared inputs)

3. Various configurable embedded memories and multiplier hard blocks

4. One architecture containing embedded floating-point cores, and

5. One architecture with carry chains.

• A front-end Verilog elaborator that has support for hard blocks.

This tool can automatically recognize when a memory or multiplier instantiated in a user circuit is too large
for a target FPGA architecture. When this happens, the tool can automatically split that memory/multiplier
into multiple smaller components (with some glue logic to tie the components together). This makes it easier
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to investigate different hard block architectures because one does not need to modify the Verilog if the circuit
instantiates a memory/multiplier that is too large.

• Packing/Clustering support for FPGA logic blocks with widely varying functionality.

This includes memories with configurable aspect ratios, multipliers blocks that can fracture into smaller multi-
pliers, soft logic clusters that contain fracturable LUTs, custom interconnect within a logic block, and more.

• Ready-to-run scripts that guide a user through the complexities of building the tools as well as using the tools to
map realistic circuits (written in Verilog) to FPGA architectures.

• Regression tests of experiments that we have conducted to help users error check and/or compare their work.

Along with experiments for more conventional FPGAs, we also include an experiment that explores FPGAs
with embedded floating-point cores investigated in [HYL+09] to illustrate the usage of the VTR framework to
explore unconventional FPGA architectures.

3.2.4 Development Trunk

The development trunk for the Verilog-to-Routing project is hosted at:

https://github.com/verilog-to-routing/vtr-verilog-to-routing

Unlike the nicely packaged offical releases the code in a constant state of flux. You should expect that the tools are not
always stable and that more work is needed to get the flow to run.

3.3 Install VTR

1. Download the VTR release

2. Unpack the release in a directory of your choice (herafter referred to as $VTR_ROOT)

3. Navigate to $VTR_ROOT and run

make

which will build all the required tools.

Warning: $VTR_ROOT should be replaced with the path to the root of VTR source tree on your machine.

The complete VTR flow has been tested on 64-bit Linux systems. The flow should work in other platforms (32-bit
Linux, Windows with cygwin) but this is untested.

See also:

More information about building VTR can be found in the Developer Guide

Please let us know your experience with building VTR so that we can improve the experience for others.

The tools included official VTR releases have been tested for compatibility. If you download a different version of
those tools, then those versions may not be mutually compatible with the VTR release.
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3.3.1 Verifying Installation

To verfiy that VTR has been installed correctly run:

$VTR_ROOT/vtr_flow/scripts/run_vtr_task.pl basic_flow

The expected output is:

k6_N10_memSize16384_memData64_40nm_timing/ch_intrinsics...OK

3.4 Running the VTR Flow

VTR is a collection of tools that perform the full FPGA CAD flow from Verilog to routing.

The design flow consists of:

• Odin II (Logic Synthesis)

• ABC (Logic Optimization & Technology Mapping)

• VPR (Pack, Place & Route)

There is no single executable for the entire flow.

Instead, scripts are provided to allow the user to easily run the entire tool flow. The following provides instructions on
using these scripts to run VTR.

3.4.1 Running a Single Benchmark

The run_vtr_flow script is provided to execute the VTR flow for a single benchmark and architecture.

Note: In the following $VTR_ROOT means the root directory of the VTR source code tree.

$VTR_ROOT/vtr_flow/scripts/run_vtr_flow.pl <circuit_file> <architecture_file>

It requires two arguments:

• <circuit_file> A benchmark circuit, and

• <architecture_file> an FPGA architecture file

Circuits can be found under:

$VTR_ROOT/vtr_flow/benchmarks/

Architecture files can be found under:

$VTR_ROOT/vtr_flow/arch/

The script can also be used to run parts of the VTR flow.

See also:

run_vtr_flow for the detailed command line options of run_vtr_flow.pl.
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3.4.2 Running Multiple Benchmarks & Architectures with Tasks

VTR also supports tasks, which manage the execution of the VTR flow for multiple benchmarks and architectures. By
default, tasks execute the run_vtr_flow for every circuit/architecture combination.

VTR provides a variety of standard tasks which can be found under:

$VTR_ROOT/vtr_flow/tasks

Tasks can be executed using run_vtr_task:

$VTR_ROOT/vtr_flow/scripts/run_vtr_task.pl <task_name>

See also:

run_vtr_task for the detailed command line options of run_vtr_task.pl.

See also:

Tasks for more information on creating, modifying and running tasks.

3.4.3 Extracting Information & Statistics

VTR can also extract useful information and statistics from executions of the flow such as area, speed tool execution
time etc.

For single benchmarks parse_vtr_flow extrastics statistics from a single execution of the flow.

For a Task, parse_vtr_task can be used to parse and assemble statistics for the entire task (i.e. multiple circuits and
architectures).

For regression testing purposes these results can also be verified against a set of golden reference results. See
parse_vtr_task for details.

3.5 Benchmarks

There are several sets of benchmark designs which can be used with VTR.

3.5.1 VTR Benchmarks

The VTR benchmarks [RLY+12][LAK+14] are a set of medium-sized benchmarks included with VTR. They are fully
compatible with the full VTR flow. They are suitable for FPGA architecture research and medium-scale CAD research.
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Table 3.1: The VTR 7.0 Benchmarks.
Benchmark Domain
bgm Finance
blob_merge Image Processing
boundtop Ray Tracing
ch_intrinsics Memory Init
diffeq1 Math
diffeq2 Math
LU8PEEng Math
LU32PEEng Math
mcml Medical Physics
mkDelayWorker32B Packet Processing
mkPktMerge Packet Processing
mkSMAdapter4B Packet Processing
or1200 Soft Processor
raygentop Ray Tracing
sha Cryptography
stereovision0 Computer Vision
stereovision1 Computer Vision
stereovision2 Computer Vision
stereovision3 Computer Vision

The VTR benchmarks are provided as Verilog under:

$VTR_ROOT/vtr_flow/benchmarks/verilog

This provides full flexibility to modify and change how the designs are implemented (including the creation of new
netlist primitives).

The VTR benchmarks are also included as pre-synthesized BLIF files under:

$VTR_ROOT/vtr_flow/benchmarks/vtr_benchmarks_blif

3.5.2 Titan Benchmarks

The Titan benchmarks [MWL+13][MWL+15] are a set of large modern FPGA benchmarks. The pre-synthesized
versions of these benchmarks are compatible with recent versions of VPR.

The Titan benchmarks are suitable for large-scale FPGA CAD research, and FPGA architecture research which does
not require synthesizing new netlist primitives.

Note: The Titan benchmarks are not included with the VTR release (due to their size). However they can be
downloaded and extracted by running make get_titan_benchmarks from the root of the VTR tree. They can
also be downloaded manually.

See also:

Running the Titan Benchmarks
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3.5.3 MCNC20 Benchmarks

The MCNC benchmarks [Yan91] are a set of small and old (circa 1991) benchmarks. They consist primarily of logic
(i.e. LUTs) with few registers and no hard blocks.

Warning: The MCNC20 benchmarks are not recommended for modern FPGA CAD and architecture research.
Their small size and design style (e.g. few registers, no hard blocks) make them unrepresentative of modern FPGA
usage. This can lead to misleading CAD and/or architecture conclusions.

The MCNC20 benchmarks included with VTR are available as .blif files under:

$VTR_ROOT/vtr_flow/benchmarks/blif/

The versions used in the VPR 4.3 release, which were mapped to 𝐾-input look-up tables using FlowMap [CD94], are
available under:

$VTR_ROOT/vtr_flow/benchmarks/blif/<#>

where 𝐾 = <#>.

Table 3.2: The MCNC20 benchmarks.
Benchmark Approximate Number of Netlist Primitives
alu4 934
apex2 1116
apex4 916
bigkey 1561
clma 3754
des 1199
diffeq 1410
dsip 1559
elliptic 3535
ex1010 2669
ex5p 824
frisc 3291
misex3 842
pdc 2879
s298 732
s38417 4888
s38584.1 4726
seq 1041
spla 2278
tseng 1583
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3.6 Power Estimation

VTR provides transistor-level dynamic and static power estimates for a given architecture and circuit.

Fig. 3.2 illustrates how power estimation is performed in the VTR flow. The actual power estimation is performed
within the VPR executable; however, additional files must be provided. In addition to the circuit and architecture files,
power estimation requires files detailing the signal activities and technology properties.

Running VTR with Power Estimation details how to run power estimation for VTR. Supporting Tools provides details
on the supporting tools that are used to generate the signal activities and technology properties files. Architecture Mod-
elling provides details about how the tool models architectures, including different modelling methods and options.
Other Architecture Options & Techniques provides more advanced configuration options.

3.6.1 Running VTR with Power Estimation

VTR Flow

The easiest way to run the VTR flow is to use the run_vtr_flow script.

In order to perform power estimation, you must add the following options:

• run_vtr_flow.pl -power

• run_vtr_flow.pl -cmos_tech <cmos_tech_properties_file>

The CMOS technology properties file is an XML file that contains relevant process-dependent information needed for
power estimation. XML files for 22nm, 45nm, and 130nm PTM models can be found here:

$VTR_ROOT/vtrflow/tech/*

See Technology Properties for information on how to generate an XML file for your own SPICE technology model.

VPR

Power estimation can also be run directly from VPR with the following (all required) options:

• vpr --power: Enables power estimation.

• vpr --activity_file <activities.act>: The activity file, produce by ACE 2.0, or another tool.

• vpr --tech_properties <tech_properties.xml>: The technology properties file.

Power estimation requires an activity file, which can be generated as described in ACE 2.0 Activity Estimation.

3.6.2 Supporting Tools

Technology Properties

Power estimation requires information detailing the properties of the CMOS technology. This information, which
includes transistor capacitances, leakage currents, etc. is included in an .xml file, and provided as a parameter to VPR.
This XML file is generated using a script which automatically runs HSPICE, performs multiple circuit simulations,
and extract the necessary values.

Some of these technology XML files are included with the release, and are located here:
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Fig. 3.2: Power Estimation in the VTR Flow
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$VTR_ROOT/vtr_flow/tech/*

If the user wishes to use a different CMOS technology file, they must run the following script:

Note: HSPICE must be available on the users path

$VTR_ROOT/vtr_flow/scripts/generate_cmos_tech_data.pl <tech_file> <tech_size> <vdd>
→˓<temp>

where:

• <tech_file>: Is a SPICE technology file, containing a pmos and nmos models.

• <tech_size>: The technology size, in meters.

Example:

A 90nm technology would have the value 90e-9.

• <vdd>: Supply voltage in Volts.

• <temp>: Operating temperature, in Celcius.

ACE 2.0 Activity Estimation

Power estimation requires activity information for the entire netlist. This ativity information consists of two values:

1. The Signal Probability, 𝑃1, is the long-term probability that a signal is logic-high.

Example:

A clock signal with a 50% duty cycle will have 𝑃1(𝑐𝑙𝑘) = 0.5.

2. The Transition Density (or switching activity), 𝐴𝑆 , is the average number of times the signal will switch during
each clock cycle.

Example:

A clock has 𝐴𝑆(𝑐𝑙𝑘) = 2.

The default tool used to perform activity estimation in VTR is ACE 2.0 [LW06]. This tool was originally designed
to work with the (now obsolete) Berkeley SIS tool ACE 2.0 was modifed to use ABC, and is included in the VTR
package here:

$VTR_ROOT/ace2

The tool can be run using the following command-line arguments:

$VTR_ROOT/ace2/ace -b <abc.blif> -c <clock_name> -o <activities.act> -n <new.blif>

where

• <abc.blif>: Is the input BLIF file produced by ABC.

• <clock_name>: Is the name of the clock in the input BLIF file

• <activities.act>: Is the activity file to be created.

• <new.blif>: The new BLIF file.
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This will be functionally identical in function to the ABC blif; however, since ABC does not maintain
internal node names, a new BLIF must be produced with node names that match the activity file.

User’s may with to use their own activity estimation tool. The produced activity file must contain one line for each net
in the BLIF file, in the following format:

<net name> <signal probability> <transistion density>

3.6.3 Architecture Modelling

The following section describes the architectural assumptions made by the power model, and the related parameters
in the architecture file.

Complex Blocks

The VTR architecture description language supports a hierarchichal description of blocks. In the architecture file,
each block is described as a pb_type, which may includes one or more children of type pb_type, and interconnect
structures to connect them.

The power estimation algorithm traverses this hierarchy recursively, and performs power estimation for each
pb_type. The power model supports multiple power estimation methods, and the user specifies the desired method
in the architecture file:

<pb_type>
<power method="<estimation-method>"/>

</pb_type>

The following is a list of valid estimation methods. Detailed descriptions of each type are provided in the following
sections. The methods are listed in order from most accurate to least accurate.

1. specify-size: Detailed transistor level modelleling.

The user supplies all buffer sizes and wire-lengths. Any not provided by the user are ignored.

2. auto-size: Detailed transistor level modelleling.

The user can supply buffer sizes and wire-lengths; however, they will be automatically inserted when not pro-
vided.

3. pin-toggle: Higher-level modelling.

The user specifies energy per toggle of the pins. Static power provided as an absolute.

4. C-internal: Higher-level modelling.

The user supplies the internal capacitance of the block. Static power provided as an absolute.

5. absolute: Highest-level modelling.

The user supplies both dynamic and static power as absolutes.

Other methods of estimation:

1. ignore: The power of the pb_type is ignored, including any children.

2. sum-of-children: Power of pb_type is solely the sum of all children pb_types.

Interconnect between the pb_type and its children is ignored.
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Note: If no estimation method is provided, it is inherited from the parent pb_type.

Note: If the top-level pb_type has no estimation method, auto-size is assumed.

specify-size

This estimation method provides a detailed transistor level modelling of CLBs, and will provide the most accurate
power estimations. For each pb_type, power estimation accounts for the following components (see Fig. 3.3).

• Interconnect multiplexers

• Buffers and wire capacitances

• Child pb_types

Fig. 3.3: Sample Block

Multiplexers: Interconnect multiplexers are modelled as 2-level pass-transistor multiplexers, comprised of minimum-
size NMOS transistors. Their size is determined automatically from the <interconnect/> structures in the archi-
tecture description file.
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Buffers and Wires: Buffers and wire capacitances are not defined in the architecture file, and must be explicitly added
by the user. They are assigned on a per port basis using the following construct:

<pb_type>
<input name="my_input" num_pins="1">

<power ...options.../>
</input>

</pb_type>

The wire and buffer attributes can be set using the following options. If no options are set, it is assumed that the wire
capacitance is zero, and there are no buffers present. Keep in mind that the port construct allows for multiple pins per
port. These attributes will be applied to each pin in the port. If necessary, the user can seperate a port into multiple
ports with different wire/buffer properties.

• wire_capacitance=1.0e-15: The absolute capacitance of the wire, in Farads.

• wire_length=1.0e-7: The absolute length of the wire, in meters.

The local interconnect capacitance option must be specified, as described in Local Interconnect Ca-
pacitance.

• wire_length=auto: The wirelength is automatically sized. See Local Wire Auto-Sizing.

• buffer_size=2.0: The size of the buffer at this pin. See for more Buffer Sizing information.

• buffer_size=auto: The size of the buffer is automatically sized, assuming it drives the above wire capac-
itance and a single multiplexer. See Buffer Sizing for more information.

Primitives: For all child pb_types, the algorithm performs a recursive call. Eventually pb_types will be reached
that have no children. These are primitives, such as flip-flops, LUTs, or other hard-blocks. The power model includes
functions to perform transistor-level power estimation for flip-flops and LUTs. If the user wishes to use a design with
other primitive types (memories, multipliers, etc), they must provide an equivalent function. If the user makes such a
function, the power_calc_primitive function should be modified to call it. Alternatively, these blocks can be
configured to use higher-level power estimation methods.

auto-size

This estimation method also performs detailed transistor-level modelling. It is almost identical to the specify-size
method described above. The only difference is that the local wire capacitance and buffers are automatically inserted
for all pins, when necessary. This is equivalent to using the specify-sizemethod with the wire_length=auto
and buffer_size=auto options for every port.

Note: This is the default power estimation method.

Although not as accurate as user-provided buffer and wire sizes, it is capable of automatically capturing trends in
power dissipation as architectures are modified.
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pin-toggle

This method allows users to specify the dynamic power of a block in terms of the energy per toggle (in Joules) of each
input, output or clock pin for the pb_type. The static power is provided as an absolute (in Watts). This is done using
the following construct:

<pb_type>
...
<power method="pin-toggle">

<port name="A" energy_per_toggle="1.0e-12"/>
<port name="B[3:2]" energy_per_toggle="1.0e-12"/>
<port name="C" energy_per_toggle="1.0e-12" scaled_by_static_porb="en1"/>
<port name="D" energy_per_toggle="1.0e-12" scaled_by_static_porb_n="en2"/>
<static_power power_per_instance="1.0e-6"/>

</power>
</pb_type>

Keep in mind that the port construct allows for multiple pins per port. Unless an subset index is provided, the energy
per toggle will be applied to each pin in the port. The energy per toggle can be scaled by another signal using the
scaled_by_static_prob. For example, you could scale the energy of a memory block by the read enable
pin. If the read enable were high 80% of the time, then the energy would be scaled by the 𝑠𝑖𝑔𝑛𝑎𝑙_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 0.8.
Alternatively scaled_by_static_prob_n can be used for active low signals, and the energy will be scaled by
(1− 𝑠𝑖𝑔𝑛𝑎𝑙_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦).

This method does not perform any transistor-level estimations; the entire power estimation is performed using the
above values. It is assumed that the power usage specified here includes power of all child pb_types. No further
recursive power estimation will be performed.

C-internal

This method allows the users to specify the dynamic power of a block in terms of the internal capacitance of the block.
The activity will be averaged across all of the input pins, and will be supplied with the internal capacitance to the
standard equation:

𝑃𝑑𝑦𝑛 =
1

2
𝛼𝐶𝑉 2.

Again, the static power is provided as an absolute (in Watts). This is done using the following construct:

<pb_type>
<power method="c-internal">

<dynamic_power C_internal="1.0e-16"/>
<static_power power_per_instance="1.0e-16"/>

</power>
</pb_type>

It is assumed that the power usage specified here includes power of all child pb_types. No further recursive power
estimation will be performed.
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absolute

This method is the most basic power estimation method, and allows users to specify both the dynamic and static power
of a block as absolute values (in Watts). This is done using the following construct:

<pb_type>
<power method="absolute">

<dynamic_power power_per_instance="1.0e-16"/>
<static_power power_per_instance="1.0e-16"/>

</power>
</pb_type>

It is assumed that the power usage specified here includes power of all child pb_types. No further recursive power
estimation will be performed.

3.6.4 Global Routing

Global routing consists of switch boxes and input connection boxes.

Switch Boxes

Switch boxes are modelled as the following components (Fig. 3.4):

1. Multiplexer

2. Buffer

3. Wire capacitance

Fig. 3.4: Switch Box

Multiplexer: The multiplexer is modelled as 2-level pass-transistor multiplexer, comprised of minimum-size NMOS
transistors. The number of inputs to the multiplexer is automatically determined.

Buffer: The buffer is a multistage CMOS buffer. The buffer size is determined based upon output capacitance provided
in the architecture file:
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<switchlist>
<switch type="mux" ... C_out="1.0e-16"/>

</switchlist>

The user may override this method by providing the buffer size as shown below:

<switchlist>
<switch type="mux" ... power_buf_size="16"/>

</switchlist>

The size is the drive strength of the buffer, relative to a minimum-sized inverter.

Input Connection Boxes

Input connection boxes are modelled as the following components (Fig. 3.5):

• One buffer per routing track, sized to drive the load of all input multiplexers to which the buffer is connected
(For buffer sizing see Buffer Sizing).

• One multiplexer per block input pin, sized according to the number of routing tracks that connect to the pin.

Fig. 3.5: Connection Box

Clock Network

The clock network modelled is a four quadrant spine and rib design, as illustrated in Fig. 3.6. At this time, the power
model only supports a single clock. The model assumes that the entire spine and rib clock network will contain buffers
separated in distance by the length of a grid tile. The buffer sizes and wire capacitances are specified in the architecture
file using the following construct:

<clocks>
<clock ... clock_options ... />

</clocks>

The following clock options are supported:

• C_wire=1e-16: The absolute capacitance, in fards, of the wire between each clock buffer.

• C_wire_per_m=1e-12: The wire capacitance, in fards per m.
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The capacitance is calculated using an automatically determined wirelength, based on the area of a
tile in the FPGA.

• buffer_size=2.0: The size of each clock buffer.

This can be replaced with the auto keyword. See Buffer Sizing for more information on buffer
sizing.

Fig. 3.6: The clock network. Squares represent CLBs, and the wires represent the clock network.

3.6.5 Other Architecture Options & Techniques

Local Wire Auto-Sizing

Due to the significant user effort required to provide local buffer and wire sizes, we developed an algorithm to esti-
mate them automatically. This algorithm recursively calculates the area of all entities within a CLB, which consists
of the area of primitives and the area of local interconnect multiplexers. If an architecture uses new primitives in
CLBs, it should include a function that returns the transistor count. This function should be called from within
power_count_transistors_primitive().

In order to determine the wire length that connects a parent entity to its children, the following assumptions are made:
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• Assumption 1: All components (CLB entities, multiplexers, crossbars) are assumed to be contained in a square-
shaped area.

• Assumption 2: All wires connecting a parent entity to its child pass through the interconnect square, which is
the sum area of all interconnect multiplexers belonging to the parent entity.

Fig. 3.7 provides an illustration of a parent entity connected to its child entities, containing one of each interconnect
type (direct, many-to-1, and complete). In this figure, the square on the left represents the area used by the transistors
of the interconnect multiplexers. It is assumed that all connections from parent to child will pass through this area.
Real wire lengths could me more or less than this estimate; some pins in the parent may be directly adjacent to child
entities, or they may have to traverse a distance greater than just the interconnect area. Unfortuantely, a more rigorous
estimation would require some information about the transistor layout.

Fig. 3.7: Local interconnect wirelength.

Table 3.3: Local interconnect wirelength and capacitance. 𝐶𝑖𝑛𝑣 is the
input capacitance of a minimum-sized inverter.

Connection from Entity Pin to: Estimated Wirelength Transistor Capacitance
Direct (Input or Output) 0.5 · 𝐿𝑖𝑛𝑡𝑒𝑟𝑐 0
Many-to-1 (Input or Output) 0.5 · 𝐿𝑖𝑛𝑡𝑒𝑟𝑐 𝐶𝐼𝑁𝑉

Complete m:n (Input) 0.5 · 𝐿𝑖𝑛𝑡𝑒𝑟𝑐 + 𝐿𝑐𝑟𝑜𝑠𝑠𝑏𝑎𝑟 𝑛 · 𝐶𝐼𝑁𝑉

Complete m:n (Output) 0.5 · 𝐿𝑖𝑛𝑡𝑒𝑟𝑐 𝐶𝐼𝑁𝑉

Table 3.3 details how local wire lengths are determined as a function of entity and interconnect areas. It is assumed
that each wire connecting a pin of a pb_type to an interconnect structure is of length 0.5 · 𝐿𝑖𝑛𝑡𝑒𝑟𝑐. In reality, this
length depends on the actual transistor layout, and may be much larger or much smaller than the estimated value. If
desired, the user can override the 0.5 constant in the architecture file:

<architecture>
<power>

<local_interconnect factor="0.5"/>
</power>

</architecture>
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Buffer Sizing

In the power estimator, a buffer size refers to the size of the final stage of multi-stage buffer (if small, only a single
stage is used). The specified size is the 𝑊

𝐿 of the NMOS transistor. The PMOS transistor will automatically be sized
larger. Generally, buffers are sized depending on the load capacitance, using the following equation:

Buffer Size =
1

2 · 𝑓𝐿𝐸
* 𝐶𝐿𝑜𝑎𝑑

𝐶𝐼𝑁𝑉

In this equation, 𝐶𝐼𝑁𝑉 is the input capacitance of a minimum-sized inverter, and 𝑓𝐿𝐸 is the logical effort factor. The
logical effort factor is the gain between stages of the multi-stage buffer, which by default is 4 (minimal delay). The
term (2 · 𝑓𝐿𝐸) is used so that the ratio of the final stage to the driven capacitance is smaller. This produces a much
lower-area, lower-power buffer that is still close to the optimal delay, more representative of common design practises.
The logical effort factor can be modified in the architecture file:

<architecture>
<power>

<buffers logical_effor_factor="4"/>
</power>

</architecture>

Local Interconnect Capacitance

If using the auto-size or wire-length options (Architecture Modelling), the local interconnect capacitance
must be specified. This is specified in the units of Farads/meter.

<architecture>
<power>

<local_interconnect C_wire="2.5e-15"/>
</power>

</architecture>

3.7 Tasks

Tasks provide a framework for running the VTR flow on multiple benchmarks, architectures and with multiple CAD
tool parameters.

A task specifies a set of benchmark circuits, architectures and CAD tool parameters to be used. By default, tasks
execute the run_vtr_flow script for every circuit/architecture/CAD parameter combination.

3.7.1 Example Tasks

• basic_flow: Runs the VTR flow mapping a simple Verilog circuit to an FPGA architecture.

• timing: Runs the flagship VTR benchmarks on a comprehensive, realistic architecture file.

• timing_chain: Same as timing but with carry chains.

• regression_mcnc: Runs VTR on the historical MCNC benchmarks on a legacy architecture file. (Note:
This is only useful for comparing to the past, it is not realistic in the modern world)

• regression_titan/titan_small: Runs a small subset of the Titan benchmarks targetting a simplified
Altera Stratix IV (commercial FPGA) architecture capture

• regression_fpu_hard_block_arch: Custom hard FPU logic block architecture
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3.7.2 Directory Layout

All of VTR’s included tasks are located here:

$VTR_ROOT/vtr_flow/tasks

If users wishes to create their own task, they must do so in this location.

All tasks must contain a configuration file located here:

$VTR_ROOT/vtr_flow/tasks/<task_name>/config/config.txt

Fig. 3.8 illustrates the directory layout for a VTR task. Every time the task is run a new run<#> directory is created
to store the output files, where <#> is the smallest integer to make the run directory name unique.

The symbolic link latest will point to the most recent run<#> directory.

<task name>

config run001 run002 run003 latest

config.txt <arch1> <arch2> ...

<circuit1> <circuit2> ...

<params1> <params2> ...

odin.out
abc.out
vpr.out

odin.out
abc.out
vpr.out

Fig. 3.8: Task directory layout.

3.7.3 Creating a New Task

1. Create the folder $VTR_ROOT/vtr_flow/tasks/<task_name>

2. Create the folder $VTR_ROOT/vtr_flow/tasks/<task_name>/config

3. Create and configure the file $VTR_ROOT/vtr_flow/tasks/<task_name>/config/config.txt
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3.7.4 Task Configuration File

The task configuration file contains key/value pairs separated by the = character. Comment line are indicted using the
# symbol.

Example configuration file:

# Path to directory of circuits to use
circuits_dir=benchmarks/verilog

# Path to directory of architectures to use
archs_dir=arch/timing

# Add circuits to list to sweep
circuit_list_add=ch_intrinsics.v
circuit_list_add=diffeq1.v

# Add architectures to list to sweep
arch_list_add=k6_N10_memSize16384_memData64_stratix4_based_timing_sparse.xml

# Parse info and how to parse
parse_file=vpr_standard.txt

Note: run_vtr_task will invoke the script (default run_vtr_flow) for the cartesian product of circuits, architectures and
script parameters specified in the config file.

3.7.5 Required Fields

• circuit_dir: Directory path of the benchmark circuits.

Absolute path or relative to $VTR_ROOT/vtr_flow/.

• arch_dir: Directory path of the architecture XML files.

Absolute path or relative to $VTR_ROOT/vtr_flow/.

• circuit_list_add: Name of a benchmark circuit file.

Use multiple lines to add multiple circuits.

• arch_list_add: Name of an architecture XML file.

Use multiple lines to add multiple architectures.

• parse_file: Parse Configuration file used for parsing and extracting the statistics.

Absolute path or relative to $VTR_ROOT/vtr_flow/parse/parse_config.
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3.7.6 Optional Fields

• script_path: Script to run for each architecture/circuit combination.

Absolute path or relative to $VTR_ROOT/vtr_flow/scripts/ or $VTR_ROOT/vtr_flow/
tasks/<task_name>/config/)

Default: run_vtr_flow

Users can set this option to use their own script instead of the default. The circuit path will be
provided as the first argument, and architecture path as the second argument to the user script.

• script_params_common: Common parameters to be passed to all script invocations.

This can be used, for example, to run partial VTR flows.

Default: none

• script_params: Alias for script_params_common

• script_params_list_add: Adds a set of command-line arguments

Multiple script_params_list_add can be provided which are addded to the cartesian product of con-
figurations to be evaluated.

• sdc_dir: Directory path to benchmark SDC files.

Absolute path or relative to $VTR_ROOT/vtr_flow/.

If provided, each benchmark will look for a similarly named SDC file.

For instance with circuit_list_add=my_circuit.v or
circuit_list_add=my_circuit.blif, the flow would look for an SDC file named
my_circuit.sdc within the specified sdc_dir.

• pass_requirements_file: Pass Requirements file.

Absolute path or relative to $VTR_ROOT/vtr_flow/parse/pass_requirements/ or
$VTR_ROOT/vtr_flow/tasks/<task_name>/config/

Default: none

3.8 run_vtr_flow

This script runs the VTR flow for a single benchmark circuit and architecture file.

The script is located at:

$VTR_ROOT/vtr_flow/scripts/run_vtr_flow.pl

3.8.1 Basic Usage

At a minimum run_vtr_flow.pl requires two command-line arguments:

run_vtr_flow.pl <circuit_file> <architecture_file>

where:

• <circuit_file> is the circuit to be processed

• <architecture_file> is the target FPGA architecture
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Note: The script will create a ./temp directory, unless otherwise specified with the -temp_dir option. The
circuit file and architecture file will be copied to the temporary directory. All stages of the flow will be run within this
directory. Several intermediate files will be generated and deleted upon completion. Users should ensure that no
important files are kept in this directory as they may be deleted.

3.8.2 Output

The standard out of the script will produce a single line with the format:

<architecture>/<circuit_name>...<status>

If execution completed successfully the status will be ‘OK’. Otherwise, the status will indicate which stage of execution
failed.

The script will also produce an output files (*.out) for each stage, containing the standout output of the executable(s).

3.8.3 Advanced Usage

Additional optional command arguments can also be passed to run_vtr_flow.pl:

run_vtr_flow.pl <circuit_file> <architecture_file> [<options>] [<vpr_options>]

where:

• <options> are additional arguments passed to run_vtr_flow.pl (described below),

• <vpr_options> are any arguments not recognized by run_vtr_flow.pl. These will be forwarded to
VPR.

For example:

run_vtr_flow.pl my_circuit.v my_arch.xml -track_memory_usage --pack --place

will run the VTR flow to map the circuit my_circuit.v onto the architecture my_arch.xml; the arguments
--pack and --place will be passed to VPR (since they are unrecognized arguments to run_vtr_flow.pl).
They will cause VPR to perform only packing and placement.

3.8.4 Detailed Command-line Options

Note: Any options not recognized by this script is forwarded to VPR.

-starting_stage <stage>
Start the VTR flow at the specified stage.

Accepted values:

• odin

• abc

• scripts

• vpr
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Default: odin

-ending_stage <stage>
End the VTR flow at the specified stage.

Accepted values:

• odin

• abc

• scripts

• vpr

Default: vpr

-power
Enables power estimation.

See Power Estimation

-cmos_tech <file>
CMOS technology XML file.

See Technology Properties

-delete_intermediate_files
Delete intermediate files (i.e. .dot, .xml, .rc, etc)

-delete_result_files
Delete result files (i.e. VPR’s .net, .place, .route outputs)

-track_memory_usage
Record peak memory usage and additional statistics for each stage.

Note: Requires /usr/bin/time -v command. Some operating systems do not report peak memory.

Default: off

-limit_memory_usage
Kill benchmark if it is taking up too much memory to avoid slow disk swaps.

Note: Requires ulimit -Sv command.

Default: off

-timeout <float>
Maximum amount of time to spend on a single stage of a task in seconds.

Default: 14 days

-temp_dir <path>
Temporary directory used for execution and intermediate files. The script will automatically create this directory
if necessary.

Default: ./temp

-valgrind
Run the flow with valgrind while using the following valgrind options:

• –leak-check=full
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• –errors-for-leak-kinds=none

• –error-exitcode=1

• –track-origins=yes

-min_hard_mult_size <int>
Tells ODIN II the minimum multiplier size that should be implemented using hard multiplier (if available).
Smaller multipliers will be implemented using soft logic.

Default: 3

-min_hard_adder_size <int>
Tells ODIN II the minimum adder size that should be implemented using hard adders (if available). Smaller
adders will be implemented using soft logic.

Default: 1

-adder_cin_global
Tells ODIN II to connect the first cin in an adder/subtractor chain to a global gnd/vdd net. Instead of creating a
dummy adder to generate the input signal of the first cin port of the chain.

3.9 run_vtr_task

This script is used to execute one or more tasks (i.e. collections of benchmarks and architectures).

See also:

See Tasks for creation and configuration of tasks.

This script runs the VTR flow for a single benchmark circuit and architecture file.

The script is located at:

$VTR_ROOT/vtr_flow/scripts/run_vtr_task.pl

3.9.1 Basic Usage

Typical usage is:

run_vtr_task.pl <task_name1> <task_name2> ...

Note: At least one task must be specified, either directly as a parameter or via the -l options.

3.9.2 Output

Each task will execute the script specified in the configuration file for every benchmark/circuit/option combination.
The standard output of the underlying script will be forwarded to the output of this script.

If golden results exist (see parse_vtr_task), they will be inspected for runtime and memory usage.
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3.9.3 Detailed Command-line Options

-s <script_param> ...
Treat the remaining command line options as parameters to forward to the underlying script (e.g. run_vtr_flow).

-j <N>
Perform parallel execution using N threads.

Note: Only effective for -system local

Warning: Large benchmarks will use very large amounts of memory (several to 10s of gigabytes). Because
of this, parallel execution often saturates the physical memory, requiring the use of swap memory, which
significantly slows execution. Be sure you have allocated a sufficiently large swap memory or errors may
result.

-l <task_list_file>
A file containing a list of tasks to execute.

Each task name should be on a separate line, e.g.:

<task_name1>
<task_name2>
<task_name3>
...

-system {local | scripts}
Controls how the actions (e.g. invocations of run_vtr_flow) are called.

Default: local

• local: Runs the flow invocations on the local machine (potentially in parallel with the -j option).

Example:

#From $VTR_ROOT/vtr_flow/tasks

$ ../scripts/run_vtr_task.pl regression_tests/vtr_reg_basic/basic_
→˓timing
regression_tests/vtr_reg_basic/basic_timing: k6_N10_mem32K_40nm.xml/ch_
→˓intrinsics.v/common OK (took 2.24 seconds)
regression_tests/vtr_reg_basic/basic_timing: k6_N10_mem32K_40nm.xml/
→˓diffeq1.v/common OK (took 10.94 seconds)

• scripts: Prints out all the generated script files (instead of calling them to run all the flow invocations).

Example:

#From $VTR_ROOT/vtr_flow/tasks

$ ../scripts/run_vtr_task.pl regression_tests/vtr_reg_basic/basic_
→˓timing -system scripts
/project/trees/vtr/vtr_flow/tasks/regression_tests/vtr_reg_basic/basic_
→˓timing/run001/k6_N10_mem32K_40nm.xml/ch_intrinsics.v/common/vtr_flow.
→˓sh
/project/trees/vtr/vtr_flow/tasks/regression_tests/vtr_reg_basic/basic_
→˓timing/run001/k6_N10_mem32K_40nm.xml/diffeq1.v/common/vtr_flow.sh
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Each generated script file (vtr_flow.sh) corresponds to a particular flow invocation generated
by the task, and is located within its own directory.

This list of scripts can be used to run flow invocations on different computing infrastructures (e.g.
a compute cluster).

Using the output of -system scripts to run a task

An example of using the output would be:

#From $VTR_ROOT/vtr_flow/tasks

$ ../scripts/run_vtr_task.pl regression_tests/vtr_reg_basic/basic_
→˓timing -system scripts | parallel -j4 'cd $(dirname {}) && {}'
regression_tests/vtr_reg_basic/basic_timing: k6_N10_mem32K_40nm.xml/ch_
→˓intrinsics.v/common OK (took 2.11 seconds)
regression_tests/vtr_reg_basic/basic_timing: k6_N10_mem32K_40nm.xml/
→˓diffeq1.v/common OK (took 10.94 seconds)

where {} is a special variable interpretted by the parallel command to represent the in-
put line (i.e. a script, see parallel’s documentation for details). This will run the scripts
generated by run_vtr_task.pl in parallel (up to 4 at-a-time due to -j4). Each script is invoked
in the script’s containing directory (cd $(dirname {})), which mimics the behaviour of
-system local -j4.

Note: While this example shows how the flow invocations could be run locally, similar tech-
niques can be used to submit jobs to other compute infrastructures (e.g. a compute cluster)

Determining Resource Requirements

Often, when running in a cluster computing enviroment, it is useful to know what compute re-
sources are required for each flow invocation.

Each generated vtr_flow.sh scripts contains the expected run-time and memory use of each
flow invocation (derived from golden reference results). These can be inspected to determine
compute requirements:

$ grep VTR_RUNTIME_ESTIMATE_SECONDS /project/trees/vtr/vtr_flow/tasks/
→˓regression_tests/vtr_reg_basic/basic_timing/run001/k6_N10_mem32K_
→˓40nm.xml/ch_intrinsics.v/common/vtr_flow.sh
VTR_RUNTIME_ESTIMATE_SECONDS=2.96

$ grep VTR_MEMORY_ESTIMATE_BYTES /project/trees/vtr/vtr_flow/tasks/
→˓regression_tests/vtr_reg_basic/basic_timing/run001/k6_N10_mem32K_
→˓40nm.xml/ch_intrinsics.v/common/vtr_flow.sh
VTR_MEMORY_ESTIMATE_BYTES=63422464

Note: If the resource estimates are unkown they will be set to 0
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3.10 parse_vtr_flow

This script parses statistics generated by a single execution of the VTR flow.

Note: If the user is using the Tasks framework, parse_vtr_task should be used.

The script is located at:

$VTR_ROOT/vtr_flow/scripts/parse_vtr_flow.pl

3.10.1 Usage

Typical usage is:

parse_vtr_flow.pl <parse_path> <parse_config_file>

where:

• <parse_path> is the directory path that contains the files to be parsed (e.g. vpr.out, odin.out, etc).

• <parse_config_file> is the path to the Parse Configuration file.

3.10.2 Output

The script will produce no standard output. A single file named parse_results.txt will be produced in the
<parse_path> folder. The file is tab delimited and contains two lines. The first line is a list of field names that
were searched for, and the second line contains the associated values.

3.11 parse_vtr_task

This script is used to parse the output of one or more Tasks. The values that will be parsed are specified using a Parse
Configuration file, which is specified in the task configuration.

The script will always parse the results of the latest execution of the task.

The script is located at:

$VTR_ROOT/vtr_flow/scripts/parse_vtr_task.pl

3.11.1 Usage

Typical usage is:

parse_vtr_task.pl <task_name1> <task_name2> ...

Note: At least one task must be specified, either directly as a parameter or through the -l option.
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3.11.2 Output

By default this script produces no standard output. A tab delimited file containing the parse results will be produced
for each task. The file will be located here:

$VTR_ROOT/vtr_flow/tasks/<task_name>/run<#>/parse_results.txt

If the -check_golden is used, the script will output one line for each task in the format:

<task_name>...<status>

where <status> will be [Pass], [Fail], or [Error].

3.11.3 Detailed Command-line Options

-l <task_list_file>
A file containing a list of tasks to parse. Each task name should be on a separate line.

-create_golden
The results will be stored as golden results. If previous golden results exist they will be overwritten.

The golden results are located here:

$VTR_ROOT/vtr_flow/tasks/<task_name>/config/golden_results.txt

-check_golden
The results will be compared to the golden results using the Pass Requirements file specified in the task con-
figuration. A Pass or Fail will be output for each task (see below). In order to compare against the golden
results, they must already exist, and have the same architectures, circuits and parse fields, otherwise the script
will report Error.

If the golden results are missing, or need to be updated, use the -create_golden option.

3.12 Parse Configuration

A parse configuration file defines a set of values that will be searched for within the specified files.

3.12.1 Format

The configuration file contains one line for each value to be searched for. Each line contains a semicolon delimited
tuple in the following format:

<field_name>;<file_to_search_within>;<regex>;<default_value>

• <field_name>: The name of the value to be searched for.

This name is used when generating the output files of parse_vtr_task and parse_vtr_flow.

• <file_to_search_within>: The name of the file that will be searched (vpr.out, odin.out, etc.)

• <regex>: A perl regular expression used to find the desired value.

The regex must contain a single grouping ( ) which will contain the desired value to be recorded.

• <default_value>: The default value for the given <field_name> if the <regex> does not match.
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If no <default_value> is specified the value -1 is used.

Or an include directive to import parsing patterns from a separate file:

%include "<filepath>"

• <filepath> is a file containing additional parse specifications which will be included in the current file.

Comments can be specified with #. Anything following a # is ignored.

3.12.2 Example File

The following is an example parse configuration file:

vpr_status;output.txt;vpr_status=(.*)
vpr_seconds;output.txt;vpr_seconds=(\d+)
width;vpr.out;Best routing used a channel width factor of (\d+)
pack_time;vpr.out;Packing took (.*) seconds
place_time;vpr.out;Placement took (.*) seconds
route_time;vpr.out;Routing took (.*) seconds
num_pre_packed_nets;vpr.out;Total Nets: (\d+)
num_pre_packed_blocks;vpr.out;Total Blocks: (\d+)
num_post_packed_nets;vpr.out;Netlist num_nets:\s*(\d+)
num_clb;vpr.out;Netlist clb blocks:\s*(\d+)
num_io;vpr.out;Netlist inputs pins:\s*(\d+)
num_outputs;vpr.out;Netlist output pins:\s*(\d+)
num_lut0;vpr.out;(\d+) LUTs of size 0
num_lut1;vpr.out;(\d+) LUTs of size 1
num_lut2;vpr.out;(\d+) LUTs of size 2
num_lut3;vpr.out;(\d+) LUTs of size 3
num_lut4;vpr.out;(\d+) LUTs of size 4
num_lut5;vpr.out;(\d+) LUTs of size 5
num_lut6;vpr.out;(\d+) LUTs of size 6
unabsorb_ff;vpr.out;(\d+) FFs in input netlist not absorbable
num_memories;vpr.out;Netlist memory blocks:\s*(\d+)
num_mult;vpr.out;Netlist mult_36 blocks:\s*(\d+)
equiv;abc.out;Networks are (equivalent)
error;output.txt;error=(.*)

%include "my_other_metrics.txt" #Include metrics from the file 'my_other_metrics.
→˓txt'

3.13 Pass Requirements

The parse_vtr_task scripts allow you to compare an executed task to a golden reference result. The comparison,
which is performed when using the parse_vtr_task.pl -check_golden option, which reports either Pass
or Fail. The requirements that must be met to qualify as a Pass are specified in the pass requirements file.
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3.13.1 Task Configuration

Tasks can be configured to use a specific pass requirements file using the pass_requirements_file keyword in the
Tasks configuration file.

3.13.2 File Location

All provided pass requirements files are located here:

$VTR_ROOT/vtr_flow/parse/pass_requirements

Users can also create their own pass requirement files.

3.13.3 File Format

Each line of the file indicates a single metric, data type and allowable values in the following format:

<metric>;<requirement>

• <metric>: The name of the metric.

• <requirement>: The metric’s pass requirement.

Valid requiremnt types are:

– Equal(): The metric value must exactly match the golden reference result.

– Range(<min_ratio>,<max_ratio>): The metric value (normalized to the golden re-
sult) must be between <min_ratio> and <max_ratio>.

– RangeAbs(<min_ratio>,<max_ratio>,<abs_threshold>): The metric value
(normalized to the golden result) must be between <min_ratio> and <max_ratio>, or
the metric’s absolute value must be below <abs_threshold>.

Or an include directive to import metrics from a separate file:

%include "<filepath>"

• <filepath>: a relative path to another pass requirements file, whose metric pass requirements will be added to
the current file.

In order for a Pass to be reported, all requirements must be met. For this reason, all of the specified metrics must be
included in the parse results (see Parse Configuration).

Comments can be specified with #. Anything following a # is ignored.

3.13.4 Example File

vpr_status;Equal() #Pass if precisely equal
vpr_seconds;RangeAbs(0.80,1.40,2) #Pass if within -20%, or +40%, or absolute
→˓value less than 2
num_pre_packed_nets;Range(0.90,1.10) #Pass if withing +/-10%

%include "routing_metrics.txt" #Import all pass requirements from the file
→˓'routing_metrics.txt'
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FOUR

FPGA ARCHITECTURE DESCRIPTION

VTR uses an XML-based architecture description language to describe the targeted FPGA architecture. This flexible
description langauge allows the user to describe a large number of hypothetical and commercial-like FPGA architec-
tures.

See the Architecture Modeling for an introduction to the architecture description langauge. For a detailed reference on
the supported options see the Architecture Reference.

4.1 Architecture Reference

This section provides a detailed reference for the FPGA Architecture description used by VTR. The Architecture
description uses XML as its representation format.

As a convention, curly brackets { } represents an option with each option separated by |. For example, a={1 | 2
| open} means field a can take a value of 1, 2, or open.

4.1.1 Top Level Tags

The first tag in all architecture files is the <architecture> tag. This tag contains all other tags in the architecture
file. The architecture tag contains the following tags:

• <models>

• <tiles>

• <layout>

• <device>

• <switchlist>

• <segmentlist>

• <directlist>

• <complexblocklist>
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4.1.2 Recognized BLIF Models (<models>)

The <models> tag contains <model name="string"> tags. Each <model> tag describes the BLIF .subckt
model names that are accepted by the FPGA architecture. The name of the model must match the corresponding name
of the BLIF model.

Note: Standard blif structures (.names, .latch, .input, .output) are accepted by default, so these models
should not be described in the <models> tag.

Each model tag must contain 2 tags: <input_ports> and <output_ports>. Each of these contains <port>
tags:

<port name="string" is_clock="{0 | 1} clock="string" combinational_sink_ports="string1 string2 ..."/>

Required Attributes

• name – The port name.

Optional Attributes

• is_clock – Identifies if the port as a clock port.

See also:

The Primitive Timing Modelling Tutorial for usage of is_clock to model clock control
blocks such as clock generators, clock buffers/gates and clock muxes.

Default: 0

• clock – Indicates the port is sequential and controlled by the specified clock (which must
be another port on the model marked with is_clock=1). Default: port is treated as com-
binational (if unspecified)

• combinational_sink_ports – A space-separated list of output ports which are com-
binationally connected to the current input port. Default: No combinational connections (if
unspecified)

Defines the port for a model.

An example models section containing a combinational primitive adder and a sequential primitive
single_port_ram follows:

<models>
<model name="single_port_ram">
<input_ports>

<port name="we" clock="clk" />
<port name="addr" clock="clk" combinational_sink_ports="out"/>
<port name="data" clock="clk" combinational_sink_ports="out"/>
<port name="clk" is_clock="1"/>

</input_ports>
<output_ports>

<port name="out" clock="clk"/>
</output_ports>

</model>

<model name="adder">
<input_ports>

<port name="a" combinational_sink_ports="cout sumout"/>
<port name="b" combinational_sink_ports="cout sumout"/>
<port name="cin" combinational_sink_ports="cout sumout"/>

(continues on next page)
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(continued from previous page)

</input_ports>
<output_ports>

<port name="cout"/>
<port name="sumout"/>

</output_ports>
</model>

</models>

Note that for single_port_ram above, the ports we, addr, data, and out are sequential since they have a clock
specified. Additionally addr and data are shown to be combinationally connected to out; this corresponds to an
internal timing path between the addr and data input registers, and the out output registers.

For the adder the input ports a, b and cin are each combinationally connected to the output ports cout and
sumout (the adder is a purely combinational primitive).

See also:

For more examples of primitive timing modeling specifications see the Primitive Block Timing Modeling Tutorial

4.1.3 Global FPGA Information

<tiles>content</tiles>
Content inside this tag contains a group of <pb_type> tags that specify the types of functional blocks and
their properties.

<layout/>
Content inside this tag specifies device grid layout.

See also:

FPGA Grid Layout

<device>content</device>
Content inside this tag specifies device information.

See also:

FPGA Device Information

<switchlist>content</switchlist>
Content inside this tag contains a group of <switch> tags that specify the types of switches and their properties.

<segmentlist>content</segmentlist>
Content inside this tag contains a group of <segment> tags that specify the types of wire segments and their
properties.

<complexblocklist>content</complexblocklist>
Content inside this tag contains a group of <pb_type> tags that specify the types of functional blocks and
their properties.
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4.1.4 FPGA Grid Layout

The valid tags within the <layout> tag are:

<auto_layout aspect_ratio="float">

Optional Attributes

• aspect_ratio – The device grid’s target aspect ratio (𝑤𝑖𝑑𝑡ℎ/ℎ𝑒𝑖𝑔ℎ𝑡)

Default: 1.0

Defines a scalable device grid layout which can be automatically scaled to a desired size.

Note: At most one <auto_layout> can be specified.

<fixed_layout name="string" width="int" height="int">

Required Attributes

• name – The unique name identifying this device grid layout.

• width – The device grid width

• height – The device grid height

Defines a device grid layout with fixed dimensions.

Note: Multiple <fixed_layout> tags can be specified.

Each <auto_layout> or <fixed_layout> tag should contain a set of grid location tags.

Grid Location Priorities

Each grid location specification has an associated numeric priority. Larger priority location specifications override
those with lower priority.

Note: If a grid block is partially overlapped by another block with higher priority the entire lower priority block is
removed from the grid.

Empty Grid Locations

Empty grid locations can be specified using the special block type EMPTY.

Note: All grid locations default to EMPTY unless otherwise specified.
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Grid Location Expressions

Some grid location tags have attributes (e.g. startx) which take an expression as their argument. An expression can
be an integer constant, or simple mathematical formula evaluated when constructing the device grid.

Supported operators include: +, -, *, /, along with ( and ) to override the default evaluation order. Expressions may
contain numeric constants (e.g. 7) and the following special variables:

• W: The width of the device

• H: The height of the device

• w: The width of the current block type

• h: The height of the current block type

Warning: All expressions are evaluated as integers, so operations such as division may have their result truncated.

As an example consider the expression W/2 - w/2. For a device width of 10 and a block type of width 3, this would
be evaluated as ⌊𝑊

2 ⌋ − ⌊𝑤
2 ⌋ = ⌊ 10

2 ⌋ − ⌊3
2⌋ = 5− 1 = 4.

Grid Location Tags

<fill type="string" priority="int"/>

Required Attributes

• type – The name of the top-level complex block type (i.e. <pb_type>) being specified.

• priority – The priority of this layout specification. Tags with higher priority override
those with lower priority.

Fills the device grid with the specified block type.

Example:

<!-- Fill the device with CLB blocks -->
<fill type="CLB" priority="1"/>

<perimeter type="string" priority="int"/>

Required Attributes

• type – The name of the top-level complex block type (i.e. <pb_type>) being specified.

• priority – The priority of this layout specification. Tags with higher priority override
those with lower priority.

Sets the perimeter of the device (i.e. edges) to the specified block type.

Note: The perimeter includes the corners

Example:

<!-- Create io blocks around the device perimeter -->
<perimeter type="io" priority="10"/>

<corners type="string" priority="int"/>
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Fig. 4.1: <fill> CLB example
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Fig. 4.2: <perimeter> io example

4.1. Architecture Reference 63



Verilog-to-Routing Documentation, Release 8.1.0-dev

Required Attributes

• type – The name of the top-level complex block type (i.e. <pb_type>) being specified.

• priority – The priority of this layout specification. Tags with higher priority override
those with lower priority.

Sets the corners of the device to the specified block type.

Example:

<!-- Create PLL blocks at all corners -->
<corners type="PLL" priority="20"/>

Fig. 4.3: <corners> PLL example

<single type="string" priority="int" x="expr" y="expr"/>

Required Attributes

• type – The name of the top-level complex block type (i.e. <pb_type>) being specified.
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• priority – The priority of this layout specification. Tags with higher priority override
those with lower priority.

• x – The horizontal position of the block type instance.

• y – The vertical position of the block type instance.

Specifies a single instance of the block type at a single grid location.

Example:

<!-- Create a single instance of a PCIE block (width 3, height 5)
at location (1,1)-->

<single type="PCIE" x="1" y="1" priority="20"/>

Fig. 4.4: <single> PCIE example

<col type="string" priority="int" startx="expr" repeatx="expr" starty="expr" incry="expr"/>

Required Attributes

• type – The name of the top-level complex block type (i.e. <pb_type>) being specified.
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• priority – The priority of this layout specification. Tags with higher priority override
those with lower priority.

• startx – An expression specifying the horizontal starting position of the column.

Optional Attributes

• repeatx – An expression specifying the horizontal repeat factor of the column.

• starty – An expression specifying the vertical starting offset of the column.

Default: 0

• incry – An expression specifying the vertical increment between block instantiations
within the region.

Default: h

Creates a column of the specified block type at startx.

If repeatx is specified the column will be repeated wherever 𝑥 = 𝑠𝑡𝑎𝑟𝑡𝑥 + 𝑘 · 𝑟𝑒𝑝𝑒𝑎𝑡𝑥, is satisfied for any
positive integer 𝑘.

A non-zero starty is typically used if a <perimeter> tag is specified to adjust the starting position of
blocks with height > 1.

Example:

<!-- Create a column of RAMs starting at column 2, and
repeating every 3 columns -->

<col type="RAM" startx="2" repeatx="3" priority="3"/>

Example:

<!-- Create IO's around the device perimeter -->
<perimeter type="io" priority=10"/>

<!-- Create a column of RAMs starting at column 2, and
repeating every 3 columns. Note that a vertical offset
of 1 is needed to avoid overlapping the IOs-->

<col type="RAM" startx="2" repeatx="3" starty="1" priority="3"/>

<row type="string" priority="int" starty="expr" repeaty="expr" startx="expr"/>

Required Attributes

• type – The name of the top-level complex block type (i.e. <pb_type>) being specified.

• priority – The priority of this layout specification. Tags with higher priority override
those with lower priority.

• starty – An expression specifying the vertical starting position of the row.

Optional Attributes

• repeaty – An expression specifying the vertical repeat factor of the row.

• startx – An expression specifying the horizontal starting offset of the row.

Default: 0

• incry – An expression specifying the horizontal increment between block instantiations
within the region.

Default: w
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Fig. 4.5: <col> RAM example
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Fig. 4.6: <col> RAM and <perimeter> io example
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Creates a row of the specified block type at starty.

If repeaty is specified the column will be repeated wherever 𝑦 = 𝑠𝑡𝑎𝑟𝑡𝑦 + 𝑘 · 𝑟𝑒𝑝𝑒𝑎𝑡𝑦, is satisfied for any
positive integer 𝑘.

A non-zero startx is typically used if a <perimeter> tag is specified to adjust the starting position of
blocks with width > 1.

Example:

<!-- Create a row of DSPs (width 1, height 3) at
row 1 and repeating every 7th row -->

<row type="DSP" starty="1" repeaty="7" priority="3"/>

Fig. 4.7: <row> DSP example

<region type="string" priority="int" startx="expr" endx="expr repeatx="expr" incrx="expr" starty="expr" endy="expr" repeaty="expr" incry="expr"/>

Required Attributes

• type – The name of the top-level complex block type (i.e. <pb_type>) being specified.
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• priority – The priority of this layout specification. Tags with higher priority override
those with lower priority.

Optional Attributes

• startx – An expression specifying the horizontal starting position of the region (inclu-
sive).

Default: 0

• endx – An expression specifying the horizontal ending position of the region (inclusive).

Default: W - 1

• repeatx – An expression specifying the horizontal repeat factor of the column.

• incrx – An expression specifying the horizontal increment between block instantiations
within the region.

Default: w

• starty – An expression specifying the vertical starting position of the region (inclusive).

Default: 0

• endy – An expression specifying the vertical ending position of the region (inclusive).

Default: H - 1

• repeaty – An expression specifying the vertical repeat factor of the column.

• incry – An expression specifying the horizontal increment between block instantiations
within the region.

Default: h

Fills the rectangular region defined by (startx, starty) and (endx, endy) with the specified block type.

Note: endx and endy are included in the region

If repeatx is specified the region will be repeated wherever 𝑥 = 𝑠𝑡𝑎𝑟𝑡𝑥+ 𝑘1 * 𝑟𝑒𝑝𝑒𝑎𝑡𝑥, is satisified for any
positive integer 𝑘1.

If repeaty is specified the region will be repeated wherever 𝑦 = 𝑠𝑡𝑎𝑟𝑡𝑦 + 𝑘2 * 𝑟𝑒𝑝𝑒𝑎𝑡𝑦, is satisified for any
positive integer 𝑘2.

Example:

<!-- Fill RAMs withing the rectangular region bounded by (1,1) and (5,4) -->
<region type="RAM" startx="1" endx="5" starty="1" endy="4" priority="4"/>

Example:

<!-- Create RAMs every 2nd column withing the rectangular region bounded
by (1,1) and (5,4) -->

<region type="RAM" startx="1" endx="5" starty="1" endy="4" incrx="2" priority="4"/
→˓>

Example:
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Fig. 4.8: <region> RAM example
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Fig. 4.9: <region> RAM increment example
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<!-- Fill RAMs within a rectangular 2x4 region and repeat every 3 horizontal
and 5 vertical units -->

<region type="RAM" startx="1" endx="2" starty="1" endy="4" repeatx="3" repeaty="5
→˓" priority="4"/>

Fig. 4.10: <region> RAM repeat example

Example:

<!-- Create a 3x3 mesh of NoC routers (width 2, height 2) whose relative positions
will scale with the device dimensions -->

<region type="NoC" startx="W/4 - w/2" starty="W/4 - w/2" incrx="W/4" incry="W/4"
→˓priority="3"/>
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Fig. 4.11: <region> NoC mesh example
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Grid Layout Example

<layout>
<!-- Specifies an auto-scaling square FPGA floorplan -->
<auto_layout aspect_ratio="1.0">

<!-- Create I/Os around the device perimeter -->
<perimeter type="io" priority=10"/>

<!-- Nothing in the corners -->
<corners type="EMPTY" priority="100"/>

<!-- Create a column of RAMs starting at column 2, and
repeating every 3 columns. Note that a vertical offset (starty)
of 1 is needed to avoid overlapping the IOs-->

<col type="RAM" startx="2" repeatx="3" starty="1" priority="3"/>

<!-- Create a single PCIE block along the bottom, overriding
I/O and RAM slots -->

<single type="PCIE" x="3" y="0" priority="20"/>

<!-- Create an additional row of I/Os just above the PCIE,
which will not override RAMs -->

<row type="io" starty="5" priority="2"/>

<!-- Fill remaining with CLBs -->
<fill type="CLB" priority="1"/>

</auto_layout>
</layout>

4.1.5 FPGA Device Information

The tags within the <device> tag are:

<sizing R_minW_nmos="float" R_minW_pmos="float"/>

Required Attributes

• R_minW_nmos – The resistance of minimum-width nmos transistor. This data is used only
by the area model built into VPR.

• R_minW_pmos – The resistance of minimum-width pmos transistor. This data is used only
by the area model built into VPR.

Required Yes

Specifies parameters used by the area model built into VPR.

<connection_block input_switch_name="string"/>

Required Attributes

• switch_name – Specifies the name of the <switch> in the <switchlist> used to
connect routing tracks to block input pins (i.e. the input connection block switch).

Required Yes

<area grid_logic_tile_area="float"/>
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Fig. 4.12: Example FPGA grid

Fig. 4.13: Input Pin Diagram.
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Required Yes

Specifies the default area used by each 1x1 grid logic tile (in MWTAs), excluding routing.

Used for an area estimate of the amount of area taken by all the functional blocks.

Note: This value can be overriden for specific <pb_type>``s with the ``area attribute.

<switch_block type="{wilton | subset | universal | custom}" fs="int"/>

Required Attributes

• type – The type of switch block to use.

• fs – The value of 𝐹𝑠

Required Yes

This parameter controls the pattern of switches used to connect the (inter-cluster) routing segments. Three fairly
simple patterns can be specified with a single keyword each, or more complex custom patterns can be specified.

Non-Custom Switch Blocks:

When using bidirectional segments, all the switch blocks have 𝐹𝑠 = 3 [BFRV92]. That is, whenever horizontal
and vertical channels intersect, each wire segment can connect to three other wire segments. The exact topology
of which wire segment connects to which can be one of three choices. The subset switch box is the planar or
domain-based switch box used in the Xilinx 4000 FPGAs – a wire segment in track 0 can only connect to other
wire segments in track 0 and so on. The wilton switch box is described in [Wil97], while the universal switch
box is described in [CWW96]. To see the topology of a switch box, simply hit the “Toggle RR” button when
a completed routing is on screen in VPR. In general the wilton switch box is the best of these three topologies
and leads to the most routable FPGAs.

When using unidirectional segments, one can specify an 𝐹𝑠 that is any multiple of 3. We use a modified wilton
switch block pattern regardless of the specified switch_block_type. For all segments that start/end at that switch
block, we follow the wilton switch block pattern. For segments that pass through the switch block that can also
turn there, we cannot use the wilton pattern because a unidirectional segment cannot be driven at an intermediate
point, so we assign connections to starting segments following a round robin scheme (to balance mux size).

Note: The round robin scheme is not tileable.

Custom Switch Blocks:

Specifying custom allows custom switch blocks to be described under the <switchblocklist> XML
node, the format for which is described in Custom Switch Blocks. If the switch block is specified as custom,
the fs field does not have to be specified, and will be ignored if present.

<chan_width_distr>content</chan_width_distr>
Content inside this tag is only used when VPR is in global routing mode. The contents of this tag are described
in Global Routing Information.

<default_fc in_type="{frac|abs}" in_val="{int|float}" out_type="{frac|abs}" out_val="{int|float}"/>
This defines the default Fc specification, if it is not specified within a <fc> tag inside a top-level complex block.
The attributes have the same meaning as the <fc> tag attributes.
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4.1.6 Switches

The tags within the <switchlist> tag specifies the switches used to connect wires and pins together.

<switch type="{mux|tristate|pass_gate|short|buffer}" name="string" R="float" Cin="float" Cout="float" Cinternal="float" Tdel="float" buf_size="{auto|float}" mux_trans_size="float", power_buf_size="int"/>
Describes a switch in the routing architecture.

Example:

<switch type="mux" name="my_awesome_mux" R="551" Cin=".77e-15" Cout="4e-15"
→˓Cinternal="5e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>

Required Attributes

• type – The type of switch:

– mux: An isolating, configurable multiplexer

– tristate: An isolating, configurable tristate-able buffer

– pass_gate: A non-isolating, configurable pass gate

– short: A non-isolating, non-configurable electrical short (e.g. between two segments).

– buffer: An isolating, non-configurable non-tristate-able buffer (e.g. in-line along a
segment).

Isolation

Isolating switches include a buffer which partition their input and output into separate DC-
connected sub-circuits. This helps reduce RC wire delays.

Non-isolating switch do not isolate their input and output, which can increase RC wire
delays.

Configurablity

Configurable switches can be turned on/off at configuration time.

Non-configurable switches can not be controlled at configuration time. These are typically
used to model non-optional connections such as electrical shorts and in-line buffers.

• name – A unique name identifying the switch

• R – Resistance of the switch.

• Cin – Input capacitance of the switch.

• Cout – Output capacitance of the switch.

Optional Attributes

• Cinternal – Since multiplexers and tristate buffers are modeled as a parallel stream of
pass transistors feeding into a buffer, we would expect an additional “internal capacitance”
to arise when the pass transistor is enabled and the signal must propogate to the buffer. See
diagram of one stream below:

Pass Transistor
|

-----
----- Buffer

| | |\
------ -------| \--------
| | | / |

(continues on next page)
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(continued from previous page)

===== ===== |/ =====
===== ===== =====
| | |

Input C Internal C Output C

Note: Only specify a value for multiplexers and/or tristate switches.

• Tdel – Intrinsic delay through the switch. If this switch was driven by a zero resistance
source, and drove a zero capacitance load, its delay would be: 𝑇𝑑𝑒𝑙 +𝑅 · 𝐶𝑜𝑢𝑡.

The ‘switch’ includes both the mux and buffer mux type switches.

Note: Required if no <Tdel> tags are specified

Note: A <switch>’s resistance (R) and output capacitance (Cout) have no effect on
delay when used for the input connection block, since VPR does not model the resis-
tance/capacitance of block internal wires.

• buf_size – Specifies the buffer size in minimum-width transistor area (:term`MWTA`)
units.

If set to auto, sized automatically from the R value. This allows you to use timing models
without R’s and C’s and still be able to measure area.

Note: Required for all isolating switch types.

Default: auto

• mux_trans_size – Specifies the size (in minimum width transistors) of each transistor
in the two-level mux used by mux type switches.

Note: Valid only for mux type switches.

• power_buf_size – Used for power estimation. The size is the drive strength of the
buffer, relative to a minimum-sized inverter.

<Tdel num_inputs="int" delay="float"/>
Instead of specifying a single Tdel value, a list of Tdel values may be specified for different values of
switch fan-in. Delay is linearly extrapolated/interpolated for any unspecified fanins based on the two
closest fanins.

Required Attributes

• num_inputs – The number of switch inputs (fan-in)

• delay – The intrinsic switch delay when the switch topology has the specified number of
switch inputs

Example:
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<switch type="mux" name="my_mux" R="522" Cin="3.1e-15" Cout="3e-15" Cinternal=
→˓"5e-15" mux_trans_size="1.7" buf_size="23">

<Tdel num_inputs="12" delay="8.00e-11"/>
<Tdel num_inputs="15" delay="8.4e-11"/>
<Tdel num_inputs="20" delay="9.4e-11"/>

</switch>

Global Routing Information

If global routing is to be performed, channels in different directions and in different parts of the FPGA can be set to
different relative widths. This is specified in the content within the <chan_width_distr> tag.

Note: If detailed routing is to be performed, all the channels in the FPGA must have the same width.

<x distr="{gaussian|uniform|pulse|delta}" peak="float" width=" float" xpeak=" float" dc=" float"/>

Required Attributes

• distr – The channel width distribution function

• peak – The peak value of the distribution

Optional Attributes

• width – The width of the distribution. Required for pulse and gaussian.

• xpeak – Peak location horizontally. Required for pulse, gaussian and delta.

• dc – The DC level of the distribution. Required for pulse, gaussian and delta.

Sets the distribution of tracks for the x-directed channels – the channels that run horizontally.

Most values are from 0 to 1.

If uniform is specified, you simply specify one argument, peak. This value (by convention between 0 and 1)
sets the width of the x-directed core channels relative to the y-directed channels and the channels between the
pads and core. Fig. 4.14 should clarify the specification of uniform (dashed line) and pulse (solid line) channel
widths. The gaussian keyword takes the same four parameters as the pulse keyword, and they are all interpreted
in exactly the same manner except that in the gaussian case width is the standard deviation of the function.

Fig. 4.14: Channel Distribution

The delta function is used to specify a channel width distribution in which all the channels have the same width
except one. The syntax is chan_width_x delta peak xpeak dc. Peak is the extra width of the single wide channel.
Xpeak is between 0 and 1 and specifies the location within the FPGA of the extra-wide channel – it is the
fractional distance across the FPGA at which this extra-wide channel lies. Finally, dc specifies the width of all
the other channels. For example, the statement chan_width_x delta 3 0.5 1 specifies that the horizontal channel
in the middle of the FPGA is four times as wide as the other channels.

Examples:
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<x distr="uniform" peak="1"/>
<x distr="gaussian" width="0.5" peak="0.8" xpeak="0.6" dc="0.2"/>

<y distr="{gaussian|uniform|pulse|delta}" peak=" float" width=" float" xpeak=" float" dc=" float"/>
Sets the distribution of tracks for the y-directed channels.

See also:

<x distr>

4.1.7 Physical Tiles

The content within the <tiles> describes the physical tiles available in the FPGA. Each tile type is specified with
the <tile> tag withing the <tiles> tag.

Tile

<tile name="string" capacity="int" width="int" height="int" area="float"/>
A tile refers to a placeable element within an FPGA architecture and describes its physical compositions on the
grid. The following attributes are applicable to each tile. The only required one is the name of the tile.

Attributes:

Required Attributes

• name – The name of this tile.

The name must be unique with respect to any other sibling <tile> tag.

Optional Attributes

• width – The width of the block type in grid tiles

Default: 1

• height – The height of the block type in grid tiles

Default: 1

• area – The logic area (in MWTA) of the block type

Default: from the <area> tag

The following tags are common to all <tile> tags:

<sub_tile name"string" capacity="{int}">

See also:

For a tutorial on describing the usage of sub tiles for heterogeneous tiles (tiles which support multiple
instances of the same or different Complex Blocks) definition see Heterogeneous tiles tutorial.

Describes one or many sub tiles corresponding to the physical tile. Each sub tile is identifies a set of one or more
stack location on a specific x, y grid location.

Attributes:

Required Attributes

• name – The name of this tile.

The name must be unique with respect to any other sibling <tile> tag.
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Optional Attributes

• capacity – The number of instances of this block type at each grid location.

Default: 1

For example:

<sub_tile name="IO" capacity="2"/>
...

</sub_tile>

specifies there are two instances of the block type IO at each of its grid locations.

Note: It is mandatory to have at least one sub tile definition for each physical tile.

<input name="string" num_pins="int" equivalent="{none|full}" is_non_clock_global="{true|false}"/>
Defines an input port. Multple input ports are described using multiple <input> tags.

Required Attributes

• name – Name of the input port.

• num_pins – Number of pins the input port has.

Optional Attributes

• equivalent – Describes if the pins of the port are logically equivalent. Input logical
equivalence means that the pin order can be swapped without changing functionality. For
example, an AND gate has logically equivalent inputs because you can swap the order
of the inputs and it’s still correct; an adder, on the otherhand, is not logically equivalent
because if you swap the MSB with the LSB, the results are completely wrong. LUTs are
also considered logically equivalent since the logic function (LUT mask) can be rotated to
account for pin swapping.

– none: No input pins are logically equivalent.

Input pins can not be swapped by the router. (Generates a unique SINK rr-node for
each block input port pin.)

– full: All input pins are considered logically equivalent (e.g. due to logical equivalance
or a full-crossbar within the cluster).

All input pins can be swapped without limitation by the router. (Generates a single
SINK rr-node shared by each input port pin.)

default: none

• is_non_clock_global –

Note: Applies only to top-level pb_type.

Describes if this input pin is a global signal that is not a clock. Very useful for signals
such as FPGA-wide asynchronous resets. These signals have their own dedicated routing
channels and so should not use the general interconnect fabric on the FPGA.

<output name="string" num_pins="int" equivalent="{none|full|instance}"/>
Defines an output port. Multple output ports are described using multiple <output> tags

Required Attributes
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• name – Name of the output port.

• num_pins – Number of pins the output port has.

Optional Attributes

• equivalent – Describes if the pins of the output port are logically equivalent:

– none: No output pins are logically equivalent.

Output pins can not be swapped by the router. (Generates a unique SRC rr-
node for each block output port pin.)

– full: All output pins are considered logically equivalent.

All output pins can be swapped without limitation by the router. For example,
this option would be appropriate to model an output port which has a full
crossbar between it and the logic within the block that drives it. (Generates a
single SRC rr-node shared by each output port pin.)

– instance: Models that sub-instances within a block (e.g. LUTs/BLEs) can be
swapped to achieve a limited form of output pin logical equivalence.

Like full, this generates a single SRC rr-node shared by each output port
pin. However, each net originating from this source can use only one output
pin from the equivalence group. This can be useful in modeling more complex
forms of equivalence in which you can swap which BLE implements which
function to gain access to different inputs.

Warning: When using instance equivalence you must be careful to
ensure output swapping would not make the cluster internal routing (pre-
viously computed by the clusterer) illegal; the tool does not update the
cluster internal routing due to output pin swapping.

Default: none

<clock name="string" num_pins="int" equivalent="{none|full}"/>
Describes a clock port. Multple clock ports are described using multiple <clock> tags. See above
descriptions on inputs

<equivalent_sites>

See also:

For a step-by-step walkthrough on describing equivalent sites see Equivalent Sites tutorial.

Describes the Complex Blocks that can be placed within a tile. Each physical tile can comprehend a
number from 1 to N of possible Complex Blocks, or sites. A site corresponds to a top-level Complex
Block that must be placeable in at least 1 physical tile locations.

<site pb_type="string" pin_mapping="string"/>

Required Attributes

• pb_type – Name of the corresponding pb_type.

Optional Attributes

• pin_mapping – Specifies whether the pin mapping between physical tile and logi-
cal pb_type:
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– direct: the pin mapping does not need to be specified as the tile pin defini-
tion is equal to the corresponding pb_type one;

– custom: the pin mapping is user-defined.

Default: direct

Example: Equivalent Sites

<equivalent_sites>
<site pb_type="MLAB_SITE" pin_mapping="direct"/>

</equivalent_sites>

<direct from="string" to="string">
Desctibes the mapping of a physical tile’s port on the logical block’s (pb_type) port.
direct is an option sub-tag of site.

Note: This tag is need only if the pin_mapping of the site is defined as custom

Attributes:
– from is relative to the physical tile pins
– to is relative to the logical block pins

<direct from="MLAB_TILE.CX" to="MLAB_SITE.BX"/>

<fc in_type="{frac|abs}" in_val="{int|float}" out_type="{frac|abs}" out_val="{int|float}">

Required Attributes

• in_type – Indicates how the 𝐹𝑐 values for input pins should be interpreted.

frac: The fraction of tracks of each wire/segment type.

abs: The absolute number of tracks of each wire/segment type.

• in_val – Fraction or absolute number of tracks to which each input pin is con-
nected.

• out_type – Indicates how the 𝐹𝑐 values for output pins should be interpreted.

frac: The fraction of tracks of each wire/segment type.

abs: The absolute number of tracks of each wire/segment type.

• out_val – Fraction or absolute number of wires/segments to which each output
pin connects.

Sets the number of tracks/wires to which each logic block pin connects in each channel bordering the pin.

The 𝐹𝑐 value [BFRV92] is interpreted as applying to each wire/segment type individually (see example).

When generating the FPGA routing architecture VPR will try to make ‘good’ choices about how pins and
wires interconnect; for more details on the criteria and methods used see [BR00].

Note: If <fc> is not specified for a complex block, the architecture’s <default_fc> is used.

Note: For unidirection routing architectures absolute 𝐹𝑐 values must be a multiple of 2.
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Example:

Consider a routing architecture with 200 length 4 (L4) wires and 50 length 16 (L16) wires per channel,
and the following Fc specification:

<fc in_type="frac" in_val="0.1" out_type="abs" out_val="25">

The above specifies that each:

• input pin connects to 20 L4 tracks (10% of the 200 L4s) and 5 L16 tracks (10% of the 50 L16s),
and

• output pin connects to 25 L4 tracks and 25 L16 tracks.

Overriding Values:

<fc_override fc_type="{frac|abs}" fc_val="{int|float}", port_name="{string}" segment_name="{string}">
Allows 𝐹𝑐 values to be overriden on a port or wire/segment type basis.

Required Attributes

• fc_type – Indicates how the override 𝐹𝑐 value should be interpreted.

frac: The fraction of tracks of each wire/segment type.

abs: The absolute number of tracks of each wire/segment type.

• fc_val – Fraction or absolute number of tracks in a channel.

Optional Attributes

• port_name – The name of the port to which this override applies. If left
unspecified this override applies to all ports.

• segment_name – The name of the segment (defined under
<segmentlist>) to which this override applies. If left unspecified
this override applies to all segments.

Note: At least one of port_name or segment_name must be specified.

Port Override Example: Carry Chains

If you have complex block pins that do not connect to general interconnect (eg. carry chains), you
would use the <fc_override> tag, within the <fc> tag, to specify them:

<fc_override fc_type="frac" fc_val="0" port_name="cin"/>
<fc_override fc_type="frac" fc_val="0" port_name="cout"/>

Where the attribute port_name is the name of the pin (cin and cout in this example).

Segment Override Example:

It is also possible to specify per <segment> (i.e. routing wire) overrides:

<fc_override fc_type="frac" fc_val="0.1" segment_name="L4"/>

Where the above would cause all pins (both inputs and outputs) to use a fractional 𝐹𝑐 of 0.1 when
connecting to segments of type L4.

Combined Port and Segment Override Example:

The port_name and segment_name attributes can be used together. For example:
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<fc_override fc_type="frac" fc_val="0.1" port_name="my_input" segment_
→˓name="L4"/>
<fc_override fc_type="frac" fc_val="0.2" port_name="my_output" segment_
→˓name="L4"/>

specifies that port my_input use a fractional 𝐹𝑐 of 0.1 when connecting to segments of type L4,
while the port my_output uses a fractional 𝐹𝑐 of 0.2 when connecting to segments of type L4.
All other port/segment combinations would use the default 𝐹𝑐 values.

<pinlocations pattern="{spread|perimeter|custom}">

Required Attributes

• pattern –

– spread denotes that the pins are to be spread evenly on all sides of the com-
plex block.

Note: Includes internal sides of blocks with width > 1 and/or height > 1.

– perimeter denotes that the pins are to be spread evenly on perimeter sides
of the complex block.

Note: Excludes the internal sides of blocks with width > 1 and/or height
> 1.

– spread_inputs_perimeter_outputs denotes that inputs pins are to
be spread on all sides of the complex block, but output pins are to be spread
only on perimeter sides of the block.

Note: This is useful for ensuring outputs do not connect to wires which
fly-over a width > 1 and height > 1 block (e.g. if using short or buffer
connections instead of a fully configurable switch block within the block).

– custom allows the architect to specify specifically where the pins are to be
placed using <loc> tags.

Describes the locations where the input, output, and clock pins are distributed in a complex logic block.

<loc side="{left|right|bottom|top}" xoffset="int" yoffset="int">name_of_complex_logic_block.port_name[int:int] ... </loc>

Note: ... represents repeat as needed. Do not put ... in the architecture file.

Required Attributes

• side – Specifies which of the four sides of a grid location the pins in the
contents are located.

Optional Attributes

• xoffset – Specifies the horizontal offset (in grid units) from block origin
(bottom left corner). The offset value must be less than the width of the block.
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Default: 0

• yoffset – Specifies the vertical offset (in grid units) from block origin (bot-
tom left corner). The offset value must be less than the height of the block.

Default: 0

Physical equivalence for a pin is specified by listing a pin more than once for different locations. For
example, a LUT whose output can exit from the top and bottom of a block will have its output pin
specified twice: once for the top and once for the bottom.

Note: If the <pinlocations> tag is missing, a spread pattern is assumed.

<switchblock_locations pattern="{external_full_internal_straight|all|external|internal|none|custom}" internal_switch="string">
Describes where global routing switchblocks are created in relation to the complex block.

Note: If the <switchblock_locations> tag is left unspecified the default pattern is assumed.

Optional Attributes

• pattern –

– external_full_internal_straight: creates full switchblocks outside
and straight switchblocks inside the complex block

– all: creates switchblocks wherever routing channels cross

– external: creates switchblocks wherever routing channels cross outside the
complex block

– internal: creates switchblocks wherever routing channels cross inside the com-
plex block

– none: denotes that no switchblocks are created for the complex block

– custom: allows the architect to specify custom switchblock locations and types
using <sb_loc> tags

Default: external_full_internal_straight

Optional Attributes

• internal_switch – The name of a switch (from <switchlist>) which should
be used for internal switch blocks.

Default: The default switch for the wire <segment>

Note: This is typically used to specify that internal wire segments are electrically
shorted together using a short type <switch>.

Example: Electrically Shorted Internal Straight Connections

In some architectures there are no switch blocks located ‘within’ a block, and the wires crossing over the block
are instead electrcially shorted to their ‘straight-through’ connections.

To model this we first define a special short type switch to electrically short such segments together:
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Fig. 4.15: Switchblock Location Patterns for a width = 2, height = 3 complex block
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<switchlist>
<switch type="short" name="electrical_short" R="0" Cin="0" Tdel="0"/>

</switchlist>

Next, we use the pre-defined external_full_internal_straight pattern, and that such connections
should use our electrical_short switch.

<switchblock_locations pattern="external_full_internal_straight" internal_switch=
→˓"electrical_short"/>

<sb_loc type="{full|straight|turns|none}" xoffset="int" yoffset="int", switch_override="string">
Specifies the type of switchblock to create at a particular location relative to a complex block for the
custom switchblock location pattern.

Required Attributes

• type – Specifies the type of switchblock to be created at this location:

– full: denotes that a full switchblock will be created (i.e. both staight and
turns)

– straight: denotes that a switchblock with only straight-through connec-
tions will be created (i.e. no turns)

– turns: denotes that a switchblock with only turning connections will be cre-
ated (i.e. no straight)

– none: denotes that no switchblock will be created

Default: full

Fig. 4.16: Switchblock Types

Optional Attributes

• xoffset – Specifies the horizontal offset (in grid units) from block origin (bottom
left corner). The offset value must be less than the width of the block.

Default: 0

• yoffset – Specifies the vertical offset (in grid units) from block origin (bottom
left corner). The offset value must be less than the height of the block.

Default: 0
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• switch_override – The name of a switch (from <switchlist>) which
should be used to construct the switch block at this location.

Default: The default switch for the wire <segment>

Note: The switchblock associated with a grid tile is located to the top-right of the grid tile

Example: Custom Description of Electrically Shorted Internal Straight Connections

If we assume a width=2, height=3 block (e.g. Fig. 4.15), we can use a custom pattern to specify an
architecture equivalent to the ‘Electrically Shorted Internal Straight Connections’ example:

<switchblock_locations pattern="custom">
<!-- Internal: using straight electrical shorts -->
<sb_loc type="straight" xoffset="0" yoffset="0" switch_override=

→˓"electrical_short">
<sb_loc type="straight" xoffset="0" yoffset="1" switch_override=

→˓"electrical_short">

<!-- External: using default switches -->
<sb_loc type="full" xoffset="0" yoffset="2"> <!-- Top edge -->
<sb_loc type="full" xoffset="1" yoffset="0"> <!-- Right edge -->
<sb_loc type="full" xoffset="1" yoffset="1"> <!-- Right edge -->
<sb_loc type="full" xoffset="1" yoffset="2"> <!-- Top Right -->

<switchblock_locations/>

4.1.8 Complex Blocks

See also:

For a step-by-step walkthrough on building a complex block see Architecture Modeling.

The content within the <complexblocklist> describes the complex blocks found within the FPGA. Each type of
complex block is specified with a top-level <pb_type> tag within the <complexblocklist> tag.

PB Type

<pb_type name="string" num_pb="int" blif_model="string"/>
Specifies a top-level complex block, or a complex block’s internal components (sub-blocks). Which attributes
are applicable depends on where the <pb_type> tag falls within the hierarchy:

• Top Level: A child of the <complexblocklist>
• Intermediate: A child of another <pb_type>
• Primitive/Leaf: Contains no <pb_type> children

For example:

<complexblocklist>
<pb_type name="CLB"/> <!-- Top level -->

...
<pb_type name="ble"/> <!-- Intermediate -->

...
<pb_type name="lut"/> <!-- Primitive -->

...
</pb_type>
<pb_type name="ff"/> <!-- Primitive -->

(continues on next page)
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(continued from previous page)

...
</pb_type>
...

</pb_type>
...

</pb_type>
...

</complexblocklist>

General:
Required Attributes

• name – The name of this pb_type.

The name must be unique with respect to any parent, sibling, or child <pb_type>.
Top-level, Intermediate or Primitive:

Optional Attributes

• num_pb – The number of instances of this pb_type at the current hierarchy level.

Default: 1

For example:

<pb_type name="CLB">
...
<pb_type name="ble" num_pb="10"/>

...
</pb_type>
...

</pb_type>

would specify that the pb_type CLB contains 10 instances of the ble pb_type.
Primitive Only:

Required Attributes

• blif_model – Specifies the netlist primitive which can be implemented by this
pb_type.

Accepted values:

– .input: A BLIF netlist input

– .output: A BLIF netlist output

– .names: A BLIF .names (LUT) primitive

– .latch: A BLIF .latch (DFF) primitive

– .subckt <custom_type>: A user defined black-box primitive.

For example:

<pb_type name="my_adder" blif_model=".subckt adder"/>
...

</pb_type>

would specify that the pb_type my_adder can implement a black-box BLIF primitive
named adder.
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Note: The input/output/clock ports for primitive pb_types must match the ports speci-
fied in the <models> section.

Optional Attributes

• class – Specifies that this primitive is of a specialized type which should be treated
specially.

See also:

Classes for more details.

The following tags are common to all <pb_type> tags:

<input name="string" num_pins="int" equivalent="{none|full}" is_non_clock_global="{true|false}"/>
Defines an input port. Multple input ports are described using multiple <input> tags.

Required Attributes

• name – Name of the input port.

• num_pins – Number of pins the input port has.

Optional Attributes

• equivalent –

Note: Applies only to top-level pb_type.

Describes if the pins of the port are logically equivalent. Input logical equivalence
means that the pin order can be swapped without changing functionality. For example,
an AND gate has logically equivalent inputs because you can swap the order of the in-
puts and it’s still correct; an adder, on the otherhand, is not logically equivalent because
if you swap the MSB with the LSB, the results are completely wrong. LUTs are also
considered logically equivalent since the logic function (LUT mask) can be rotated to
account for pin swapping.

– none: No input pins are logically equivalent.

Input pins can not be swapped by the router. (Generates a unique SINK
rr-node for each block input port pin.)

– full: All input pins are considered logically equivalent (e.g. due to logical equiv-
alance or a full-crossbar within the cluster).

All input pins can be swapped without limitation by the router. (Generates
a single SINK rr-node shared by each input port pin.)

default: none

• is_non_clock_global –

Note: Applies only to top-level pb_type.

Describes if this input pin is a global signal that is not a clock. Very useful for sig-
nals such as FPGA-wide asynchronous resets. These signals have their own dedicated
routing channels and so should not use the general interconnect fabric on the FPGA.
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<output name="string" num_pins="int" equivalent="{none|full|instance}"/>
Defines an output port. Multple output ports are described using multiple <output> tags

Required Attributes

• name – Name of the output port.

• num_pins – Number of pins the output port has.

Optional Attributes

• equivalent –

Note: Applies only to top-level pb_type.

Describes if the pins of the output port are logically equivalent:

– none: No output pins are logically equivalent.

Output pins can not be swapped by the router. (Generates a unique SRC
rr-node for each block output port pin.)

– full: All output pins are considered logically equivalent.

All output pins can be swapped without limitation by the router. For ex-
ample, this option would be appropriate to model an output port which
has a full crossbar between it and the logic within the block that drives it.
(Generates a single SRC rr-node shared by each output port pin.)

– instance: Models that sub-instances within a block (e.g. LUTs/BLEs) can be
swapped to achieve a limited form of output pin logical equivalence.

Like full, this generates a single SRC rr-node shared by each output
port pin. However, each net originating from this source can use only one
output pin from the equivalence group. This can be useful in modeling
more complex forms of equivalence in which you can swap which BLE
implements which function to gain access to different inputs.

Warning: When using instance equivalence you must be careful
to ensure output swapping would not make the cluster internal routing
(previously computed by the clusterer) illegal; the tool does not update
the cluster internal routing due to output pin swapping.

Default: none

<clock name="string" num_pins="int" equivalent="{none|full}"/>
Describes a clock port. Multple clock ports are described using multiple <clock> tags. See above descriptions
on inputs

<mode name="string" disable_packing="bool">
Required Attributes

• name – Name for this mode. Must be unique compared to other modes.
Specifies a mode of operation for the <pb_type>. Each child mode tag denotes a different mode of operation
for the <pb_type>. Each mode tag may contains other <pb_type> and <interconnect> tags.

Note: Modes within the same parent <pb_type> are mutually exclusive.
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Note: If a <pb_type> has only one mode of operation the mode tag can be omitted.

Optional Attributes

• disable_packing – Specify if a mode is disabled or not for VPR packer. When a
mode is defined to be disabled for packing (disable_packing="true"), packer
will not map any logic to the mode. This optional syntax aims to help debugging of
multi-mode <pb_type> so that users can spot bugs in their XML definition quickly.
By default, it is set to false.

Note: When a mode is specified to be disabled for packing, its child <pb_type> and the <mode> of
child <pb_type> will be considered as disabled for packing automatically. There is no need to specify
disable_packing for every <mode> in the tree of <pb_type>.

Warning: This is a power-user debugging option. See Multi-mode Logic Block Tutorial for a detailed
how-to-use.

For example:

<!--A fracturable 6-input LUT-->
<pb_type name="lut">

...
<mode name="lut6">

<!--Can be used as a single 6-LUT-->
<pb_type name="lut6" num_pb="1">

...
</pb_type>
...

</mode>
...
<mode name="lut5x2">

<!--Or as two 5-LUTs-->
<pb_type name="lut5" num_pb="2">

...
</pb_type>
...

</mode>
</pb_type>

specifies the lut pb_type can be used as either a single 6-input LUT, or as two 5-input LUTs (but not both).

Interconnect

As mentioned earlier, the mode tag contains <pb_type> tags and an <interconnect> tag. The following de-
scribes the tags that are accepted in the <interconnect> tag.

<complete name="string" input="string" output="string"/>
Required Attributes

• name – Identifier for the interconnect.

• input – Pins that are inputs to this interconnect.
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• output – Pins that are outputs of this interconnect.
Describes a fully connected crossbar. Any pin in the inputs can connect to any pin at the output.

Example:

<complete input="Top.in" output="Child.in"/>

Fig. 4.17: Complete interconnect example.

<direct name="string" input="string" output="string"/>
Required Attributes

• name – Identifier for the interconnect.

• input – Pins that are inputs to this interconnect.

• output – Pins that are outputs of this interconnect.
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Describes a 1-to-1 mapping between input pins and output pins.

Example:

<direct input="Top.in[2:1]" output="Child[1].in"/>

Fig. 4.18: Direct interconnect example.

<mux name="string" input="string" output="string"/>
Required Attributes

• name – Identifier for the interconnect.

• input – Pins that are inputs to this interconnect. Different data lines are separated by
a space.

• output – Pins that are outputs of this interconnect.
Describes a bus-based multiplexer.

Note: Buses are not yet supported so all muxes must use one bit wide data only!

Example:

<mux input="Top.A Top.B" output="Child.in"/>

A <complete>, <direct>, or <mux> tag may take an additional, optional, tag called <pack_pattern> that is
used to describe molecules. A pack pattern is a power user feature directing that the CAD tool should group certain
netlist atoms (eg. LUTs, FFs, carry chains) together during the CAD flow. This allows the architect to help the CAD
tool recognize structures that have limited flexibility so that netlist atoms that fit those structures be kept together as
though they are one unit. This tag impacts the CAD tool only, there is no architectural impact from defining molecules.

<pack_pattern name="string" in_port="string" out_port="string"/>
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Fig. 4.19: Mux interconnect example.

Warning: This is a power user option. Unless you know why you need it, you probably shouldn’t specify
it.

Required Attributes

• name – The name of the pattern.

• in_port – The input pins of the edges for this pattern.

• out_port – Which output pins of the edges for this pattern.

This tag gives a hint to the CAD tool that certain architectural structures should stay together during packing.
The tag labels interconnect edges with a pack pattern name. All primitives connected by the same pack pattern
name becomes a single pack pattern. Any group of atoms in the user netlist that matches a pack pattern are
grouped together by VPR to form a molecule. Molecules are kept together as one unit in VPR. This is useful
because it allows the architect to help the CAD tool assign atoms to complex logic blocks that have interconnect
with very limited flexibility. Examples of architectural structures where pack patterns are appropriate include:
optionally registered inputs/outputs, carry chains, multiply-add blocks, etc.

There is a priority order when VPR groups molecules. Pack patterns with more primitives take priority over
pack patterns with less primitives. In the event that the number of primitives is the same, the pack pattern with
less inputs takes priority over pack patterns with more inputs.

Special Case:

To specify carry chains, we use a special case of a pack pattern. If a pack pattern has exactly one connection to
a logic block input pin and exactly one connection to a logic block output pin, then that pack pattern takes on
special properties. The prepacker will assume that this pack pattern represents a structure that spans multiple
logic blocks using the logic block input/output pins as connection points. For example, lets assume that a logic
block has two, 1-bit adders with a carry chain that links adjacent logic blocks. The architect would specify those
two adders as a pack pattern with links to the logic block cin and cout pins. Lets assume the netlist has a group
of 1-bit adder atoms chained together to form a 5-bit adder. VPR will break that 5-bit adder into 3 molecules:
two 2-bit adders and one 1-bit adder connected in order by a the carry links.

Example:

Consider a classic basic logic element (BLE) that consists of a LUT with an optionally registered flip-flop. If a
LUT is followed by a flip-flop in the netlist, the architect would want the flip-flop to be packed with the LUT in
the same BLE in VPR. To give VPR a hint that these blocks should be connected together, the architect would
label the interconnect connecting the LUT and flip-flop pair as a pack_pattern:
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<pack_pattern name="ble" in_port="lut.out" out_port="ff.D"/>

Fig. 4.20: Pack Pattern Example.

Classes

Using these structures, we believe that one can describe any digital complex logic block. However, we believe that
certain kinds of logic structures are common enough in FPGAs that special shortcuts should be available to make their
specification easier. These logic structures are: flip-flops, LUTs, and memories. These structures are described using
a class=string attribute in the <pb_type> primitive. The classes we offer are:

class="lut"
Describes a K-input lookup table.

The unique characteristic of a lookup table is that all inputs to the lookup table are logically equivalent. When
this class is used, the input port must have a port_class="lut_in" attribute and the output port must have
a port_class="lut_out" attribute.

class="flipflop"
Describes a flipflop.

Input port must have a port_class="D" attribute added. Output port must have a port_class="Q"
attribute added. Clock port must have a port_class="clock" attribute added.

class="memory"
Describes a memory.

Memories are unique in that a single memory physical primitive can hold multiple, smaller, logical memories
as long as:

1. The address, clock, and control inputs are identical and
2. There exists sufficient physical data pins to satisfy the netlist memories when the different netlist memo-

ries are merged together into one physical memory.
Different types of memories require different attributes.

Single Port Memories Require:
• An input port with port_class="address" attribute
• An input port with port_class="data_in" attribute
• An input port with port_class="write_en" attribute
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• An output port with port_class="data_out" attribute
• A clock port with port_class="clock" attribute

Dual Port Memories Require:
• An input port with port_class="address1" attribute
• An input port with port_class="data_in1" attribute
• An input port with port_class="write_en1" attribute
• An input port with port_class="address2" attribute
• An input port with port_class="data_in2" attribute
• An input port with port_class="write_en2" attribute
• An output port with port_class="data_out1" attribute
• An output port with port_class="data_out2" attribute
• A clock port with port_class="clock" attribute

Timing

See also:

For examples of primitive timing modeling specifications see the Primitive Block Timing Modeling Tutorial

Timing is specified through tags contained with in pb_type, complete, direct, or mux tags as follows:

<delay_constant max="float" min="float" in_port="string" out_port="string"/>
Optional Attributes

• max – The maximum delay value.

• min – The minimum delay value.

Required Attributes

• in_port – The input port name.

• out_port – The output port name.
Specifies a maximum and/or minimum delay from in_port to out_port.

• If in_port and out_port are non-sequential (i.e combinational) inputs specifies the combinational
path delay between them.

• If in_port and out_port are sequential (i.e. have T_setup and/or T_clock_to_Q tags) specifies
the combinational delay between the primitive’s input and/or output registers.

Note: At least one of the max or min attributes must be specified

Note: If only one of max or min are specified the unspecified value is implicitly set to the same value

<delay_matrix type="{max | min}" in_port="string" out_port="string"> matrix </delay>
Required Attributes

• type – Specifies the delay type.

• in_port – The input port name.

• out_port – The output port name.

• matrix – The delay matrix.
Describe a timing matrix for all edges going from in_port to out_port. Number of rows of matrix should
equal the number of inputs, number of columns should equal the number of outputs.

• If in_port and out_port are non-sequential (i.e combinational) inputs specifies the combinational
path delay between them.
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• If in_port and out_port are sequential (i.e. have T_setup and/or T_clock_to_Q tags) specifies
the combinational delay between the primitive’s input and/or output registers.

Example: The following defines a delay matrix for a 4-bit input port in, and 3-bit output port out:

<delay_matrix type="max" in_port="in" out_port="out">
1.2e-10 1.4e-10 3.2e-10
4.6e-10 1.9e-10 2.2e-10
4.5e-10 6.7e-10 3.5e-10
7.1e-10 2.9e-10 8.7e-10

</delay>

Note: To specify both max and min delays two <delay_matrix> should be used.

<T_setup value="float" port="string" clock="string"/>
Required Attributes

• value – The setup time value.

• port – The port name the setup constraint applies to.

• clock – The port name of the clock the setup constraint is specified relative to.
Specifies a port’s setup constraint.

• If port is an input specifies the external setup time of the primitive’s input register (i.e. for paths termi-
nating at the input register).

• If port is an output specifies the internal setup time of the primitive’s output register (i.e. for paths
terminating at the output register) .

Note: Applies only to primitive <pb_type> tags

<T_hold value="float" port="string" clock="string"/>
Required Attributes

• value – The hold time value.

• port – The port name the setup constraint applies to.

• clock – The port name of the clock the setup constraint is specified relative to.
Specifies a port’s hold constraint.

• If port is an input specifies the external hold time of the primitive’s input register (i.e. for paths termi-
nating at the input register).

• If port is an output specifies the internal hold time of the primitive’s output register (i.e. for paths
terminating at the output register) .

Note: Applies only to primitive <pb_type> tags

<T_clock_to_Q max="float" min="float" port="string" clock="string"/>
Optional Attributes

• max – The maximum clock-to-Q delay value.

• min – The minimum clock-to-Q delay value.

Required Attributes

• port – The port name the delay value applies to.

• clock – The port name of the clock the clock-to-Q delay is specified relative to.
Specifies a port’s clock-to-Q delay.
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• If port is an input specifies the internal clock-to-Q delay of the primitive’s input register (i.e. for paths
starting at the input register).

• If port is an output specifies the external clock-to-Q delay of the primitive’s output register (i.e. for
paths starting at the output register) .

Note: At least one of the max or min attributes must be specified

Note: If only one of max or min are specified the unspecified value is implicitly set to the same value

Note: Applies only to primitive <pb_type> tags

Modeling Sequential Primitive Internal Timing Paths

See also:

For examples of primitive timing modeling specifications see the Primitive Block Timing Modeling Tutorial

By default, if only <T_setup> and <T_clock_to_Q> are specified on a primitive pb_type no internal timing
paths are modeled. However, such paths can be modeled by using <delay_constant> and/or <delay_matrix>
can be used in conjunction with <T_setup> and <T_clock_to_Q>. This is useful for modeling the speed-limiting
path of an FPGA hard block like a RAM or DSP.

As an example, consider a sequential black-box primitive named seq_foo which has an input port in, output port
out, and clock clk:

<pb_type name="seq_foo" blif_model=".subckt seq_foo" num_pb="1">
<input name="in" num_pins="4"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>

<!-- external -->
<T_setup value="80e-12" port="seq_foo.in" clock="clk"/>
<T_clock_to_Q max="20e-12" port="seq_foo.out" clock="clk"/>

<!-- internal -->
<T_clock_to_Q max="10e-12" port="seq_foo.in" clock="clk"/>
<delay_constant max="0.9e-9" in_port="seq_foo.in" out_port="seq_foo.out"/>
<T_setup value="90e-12" port="seq_foo.out" clock="clk"/>

</pb_type>

To model an internal critical path delay, we specify the internal clock-to-Q delay of the input register (10ps), the
internal combinational delay (0.9ns) and the output register’s setup time (90ps). The sum of these delays corresponds
to a 1ns critical path delay.

Note: Primitive timing paths with only one stage of registers can be modeled by specifying <T_setup> and
<T_clock_to_Q> on only one of the ports.
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Power

See also:

Power Estimation, for the complete list of options, their descriptions, and required sub-fields.

<power method="string">contents</power>
Optional Attributes

• method – Indicates the method of power estimation used for the given pb_type.

Must be one of:

– specify-size

– auto-size

– pin-toggle

– C-internal

– absolute

– ignore

– sum-of-children

Default: auto-size.

See also:

Power Architecture Modelling for a detailed description of the various power estimation
methods.

The contents of the tag can consist of the following tags:
• <dynamic_power>
• <static_power>
• <pin>

<dynamic_power power_per_instance="float" C_internal="float"/>
Optional Attributes

• power_per_instance – Absolute power in Watts.

• C_internal – Block capacitance in Farads.

<static_power power_per_instance="float"/>
Optional Attributes

• power_per_instance – Absolute power in Watts.

<port name="string" energy_per_toggle="float" scaled_by_static_prob="string" scaled_by_static_prob_n="string"/>
Required Attributes

• name – Name of the port.

• energy_per_toggle – Energy consumed by a toggle on the port specified in name.

Optional Attributes

• scaled_by_static_prob – Port name by which to scale
energy_per_toggle based on its logic high probability.

• scaled_by_static_prob_n – Port name by which to scale
energy_per_toggle based on its logic low probability.
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4.1.9 Wire Segments

The content within the <segmentlist> tag consists of a group of <segment> tags. The <segment> tag and its
contents are described below.

<segment name="unique_name" length="int" type="{bidir|unidir}" freq="float" Rmetal="float" Cmetal="float">content</segment>
Required Attributes

• name – A unique alphanumeric name to identify this segment type.

• length – Either the number of logic blocks spanned by each segment, or the keyword
longline. Longline means segments of this type span the entire FPGA array.

Note: longline is only supported on with bidir routing

• freq – The supply of routing tracks composed of this type of segment. VPR automati-
cally determines the percentage of tracks for each segment type by taking the frequency
for the type specified and dividing with the sum of all frequencies. It is recommended
that the sum of all segment frequencies be in the range 1 to 100.

• Rmetal – Resistance per unit length (in terms of logic blocks) of this wiring track, in
Ohms. For example, a segment of length 5 with Rmetal = 10 Ohms / logic block would
have an end-to-end resistance of 50 Ohms.

• Cmetal – Capacitance per unit length (in terms of logic blocks) of this wiring track, in
Farads. For example, a segment of length 5 with Cmetal = 2e-14 F / logic block would
have a total metal capacitance of 10e-13F.

• directionality – This is either unidirectional or bidirectional and indicates
whether a segment has multiple drive points (bidirectional), or a single driver at one
end of the wire segment (unidirectional). All segments must have the same directional-
ity value. See [LLTY04] for a description of unidirectional single-driver wire segments.

• content – The switch names and the depopulation pattern as described below.

Fig. 4.21: Switch block and connection block pattern example with four tracks per channel

<sb type="pattern">int list</sb>
This tag describes the switch block depopulation (as illustrated in Fig. 4.21) for this particular wire segment.
For example, the first length 6 wire in the figure below has an sb pattern of 1 0 1 0 1 0 1. The second
wire has a pattern of 0 1 0 1 0 1 0. A 1 indicates the existence of a switch block and a 0 indicates that
there is no switch box at that point. Note that there a 7 entries in the integer list for a length 6 wire. For a length
L wire there must be L+1 entries separated by spaces.

Note: Can not be specified for longline segments (which assume full switch block population)

<cb type="pattern">int list</cb>
This tag describes the connection block depopulation (as illustrated by the circles in Fig. 4.21) for this particular
wire segment. For example, the first length 6 wire in the figure below has an sb pattern of 1 1 1 1 1 1. The
third wire has a pattern of 1 0 0 1 1 0. A 1 indicates the existence of a connection block and a 0 indicates
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that there is no connection box at that point. Note that there a 6 entries in the integer list for a length 6 wire. For
a length L wire there must be L entries separated by spaces.

Note: Can not be specified for longline segments (which assume full connection block population)

<mux name="string"/>
Required Attributes

• name – Name of the mux switch type used to drive this type of segment.

Note: For UNIDIRECTIONAL only.

Tag must be included and name must be the same as the name you give in <switch type="mux"
name="...

<wire_switch name="string"/>
Required Attributes

• name – Name of the switch type used by other wires to drive this type of segment.

Note: For BIDIRECTIONAL only.

Tag must be included and the name must be the same as the name you give in <switch
type="tristate|pass_gate" name="... for the switch which represents the wire switch in your
architecture.

<opin_switch name="string"/>

Note: For BIDIRECTIONAL only.

Required Attributes

• name – Name of the switch type used by block pins to drive this type of segment.

Tag must be included and name must be the same as the name you give in <switch
type="tristate|pass_gate" name="... for the switch which represents the output pin switch in
your architecture.

Note: In unidirectional segment mode, there is only a single buffer on the segment. Its type is specified by
assigning the same switch index to both wire_switch and opin_switch. VPR will error out if these two are not
the same.

Note: The switch used in unidirectional segment mode must be buffered.
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4.1.10 Clocks

There are two options for describing clocks. One method allows you to specify clocking purely for power estimation,
see Specifing Clocking Purely for Power Estimation. The other method allows you to specify a clock architecture
that is used as part of the routing resources, see Specifing a Clock Architecture. Both methods should not be used in
tandem.

Specifing Clocking Purely for Power Estimation

The clocking configuration is specified with <clock> tags within the <clocks> section.

Note: Currently the information in the <clocks> section is only used for power estimation.

See also:

Power Estimation for more details.

<clock C_wire="float" C_wire_per_m="float" buffer_size={"float"|"auto"}/>
Optional Attributes

• C_wire – The absolute capacitance, in Farads, of the wire between each clock buffer.

• C_wire_per_m – The wire capacitance, in Farads per Meter.

• buffer_size – The size of each clock buffer.

Specifing a Clock Architecture

The element <clocknetworks> contains three sub-elements that collectively describe the clock architecture: the
wiring parameters <metal_layers>, the clock distribution <clock_network>, and the clock connectivity
<clock_routing>.

Clock Architecture Example

The following example shows how a rib-spine (row/column) style clock architecture can be defined.

<clocknetworks>
<metal_layers >

<metal_layer name="global_spine" Rmetal="50.42" Cmetal="20.7e-15"/>
<metal_layer name="global_rib" Rmetal="50.42" Cmetal="20.7e-15"/>

</metal_layers >

<!-- Full Device: Center Spine -->
<clock_network name="spine1" num_inst="2">

<spine metal_layer="global_spine" x="W/2" starty="0" endy="H">
<switch_point type="drive" name="drive_point" yoffset="H/2" buffer="drive_

→˓buff"/>
<switch_point type="tap" name="taps" yoffset="0" yincr="1"/>

</spine>
</clock_network>

<!-- Full Device: Each Grid Row -->
<clock_network name="rib1" num_inst="2">

<rib metal_layer="global_rib" y="0" startx="0" endx="W" repeatx="W" repeaty="1
→˓"> (continues on next page)
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(continued from previous page)

<switch_point type="drive" name="drive_point" xoffset="W/2" buffer="drive_
→˓buff"/>

<switch_point type="tap" name="taps" xoffset="0" xincr="1"/>
</rib>

</clock_network>

<clock_routing>
<!-- connections from inter-block routing to central spine -->
<tap from="ROUTING" to="spine1.drive_point" locationx="W/2" locationy="H/2"

→˓switch="general_routing_switch" fc_val="1.0"/>

<!-- connections from spine to rib -->
<tap from="spine1.taps" to="rib1.drive_point" switch="general_routing_switch"

→˓fc_val="0.5"/>

<!-- connections from rib to clock pins -->
<tap from="rib1.taps" to="CLOCK" switch="ipin_cblock" fc_val="1.0"/>

</clock_routing >
</clocknetworks >

Fig. 4.22: <spine> “spine1” vertical clock wire example. The two spines (num_inst="2") are located horizon-
tally at W/2 (in the middle of the device), and spans the entire height of the device (0..H). The drive points are located
at H/2, with tap points located at unit increments along their length. Buffers of drive_buff type (would be defined
in <switches>) are used to drive the two halves of the spines.
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Fig. 4.23: <rib> “rib1” horizontal clock wire example. Each rib spans the full width of the device (0..W), with the
drive points located at the mid-point (W/2), and tap points in unit increments along each rib. There are two ribs at each
vertical location (num_inst="2"), and pairs of ribs are stamped out at each row of the device (repeaty="1").

4.1. Architecture Reference 107



Verilog-to-Routing Documentation, Release 8.1.0-dev

Clock Architecture Tags

The <metal_layers> element describes the per unit length electrical parameters, resistance (Rmetal) and capac-
itance (Cmetel), used to implement the clock distribution wires. Wires are modeled soley based on Rmetal and
Cmetal parameters which are derived from the physical implementation of the metal layer width and spacing. There
can be one or more wiring implementation options (metal layer, width and spacing) that are used by the later clock
network specification and each is described in a separate <metal_layer> sub-element. The syntax of the wiring
electrical information is:

<metal_layer name="string" Rmetal="float" Cmetal="float"/>
Required Attributes

• name – A unique string for reference.

• Rmetal – The resistance in Ohms of the wire per unit block in the FPGA architecture;
a unit block usually corresponds to a logic cluster.

Req_pram Cmetal The capacitance in Farads of the wire per unit block.

The <clock_network> element contains sub-elements that describe the clock distribution wires for the clock
architecture. There could be more than one <clock_network> element to describe separate types of distribution
wires. The high-level start tag for a clock network is as follows:

<clock_network name="string" num_inst="integer">
Required Attributes

• name – A unique string for reference.

• num_inst – which describes the number of parallel instances of the clock distribution
types described in the <clock_network> sub-elements.

Note: Many paramters used in the following clock architecture tags take an espression (expr) as an argument
simular to Grid Location Expressions. However, only a subset of special variables are suported: W (device
width) and H (device height).

The supported clock distribution types are <spine> and <rib>. Spines are used to describe vertical clock
distribution wires. Whereas, Ribs is used to describe a horizontal clock distribution wire. See Clock Archi-
tecture Example and accompanying figures Fig. 4.22 and Fig. 4.23 for example use of <spine> and <rib>
parameters.

<spine metal_layer="string" x="expr" starty="expr" endy="expr" repeatx="expr" repeaty="expr"/>

Required Attributes

• metal_layer – A referenced metal layer that sets the unit resistance and capac-
itance of the distribution wire over the length of the wire.

• starty – The start y grid location, of the wire which runs parallel to the y-axis
from starty and ends at endy, inclusive. Value can be relative to the device size.

• endy – The end of y grid location of the wire. Value can be relative to the device
size.

• x – The location of the spine with respect to the x-axis. Value can be relative to the
device size.

Optional Attributes

• repeatx – The horizontal repeat factor of the spine along the device. Value can
be relative to the device size.
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• repeaty – The vertical repeat factor of the spine along the device. Value can be
relative to the device size.

The provided example clock network (Clock Architecture Example) defines two spines, and neither repeats as
each spans the entire height of the device and is locally at the horizontal midpoint of the device.

<rib metal_layer="string" y="expr" startx="expr" endx="expr" repeatx="expr" repeaty="expr"/>

Required Attributes

• metal_layer – A referenced metal layer that sets the unit resistance and capac-
itance of the distribution wire over the length of the wire.

• startx – The start x grid location, of the wire which runs parallel to the x-axis
from startx and ends at endx, inclusive. Value can be relative to the device size.

• endx – The end of x grid location of the wire. Value can be relative to the device
size.

• y – The location of the rib with respect to the y-axis. Value can be relative to the
device size.

Optional Attributes

• repeatx – The horizontal repeat factor of the rib along the device. Value can be
relative to the device size.

• repeaty – The vertical repeat factor of the rib along the device. Value can be
relative to the device size.

Along each spine and rib is a group of switch points. Switch points are used to describe drive or tap locations
along the clock distribution wire, and are enclosed in the relevant <rib> or <spine> tags:

<switch_point type="{drive | tap}" name="string" yoffset="expr" xoffset="expr" xinc="expr" yinc="expr" buffer="string">

Required Attributes

• type –

– drive – Drive points are where the clock distribution wire can be driven by a
routing switch or buffer.

– tap – Tap points are where it can drive a routing switch or buffer to send a
signal to a different clock_network or logicblock.

• buffer – (Required only for drive points) A reference to a pre-defined routing
switch; specfied by <switch> tag, see Section Switches. This switch will be
used at the drive point. The clock architecture generator uses two of these buffers
to drive the two portions of this clock_network wire when it is split at the drive
point, see Figures Fig. 4.23 and Fig. 4.22.

Optional Attributes

• xoffset – (Only for rib network) Offset from the startx of a rib network.

• yoffset – (Only for spine network) Offset from the starty of a spine net-
work.

• xinc – (Only for rib tap points) Descibes the repeat factor of a series of evenly
spaced tap points.

• yinc – (Only for spine tap points) Descibes the repeat factor of a series of evenly
spaced tap points.
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Note: A single <switch_point> specification may define a set of tap points (type="tap", with
either xincr or yincr), or a single drive point (type="drive")

Lastly the <clock_routing> element consists of a group of tap statements which separately describe the con-
nectivity between clock-related routing resources (pin or wire). The tap element and its attribute sare as follows:

<tap from="string" to="string" locationx="expr" locationy="expr" switch="string" fc_val="float">
Required Attributes

• from – The set of routing resources to make connections from. This can be either:

– clock_name.tap_points_name: A set of clock network tap-type switch-
points. The format is clock network name, followed by the tap points name and
delineated by a period (e.g. spine1.taps), or

– ROUTING: a special literal which references a connection from general inter-block
routing (at a location specified by locationx and locationy parameters).

Examples can be see in Clock Architecture Example.

• to – The set of routing resources to make connections to. Can be a unique name or
special literal:

– clock_name.drive_point_name: A clock network drive-type switch-
point. The format is clock network name, followed by the drive point name and
delineated by a period (e.g. rib1.drive_point).

– CLOCK: a special literal which describes connections from clock network tap
points that supply the clock to clock pins on blocks at the tap locations; these
are clock inputs are already specified on blocks (top-level <pb_type>/<tile>)
in the VTR architecture file.

Examples can be see in Clock Architecture Example.

• switch – The routing switch (defined in <switches>) used for this connection.

• fc_val – A decimal value between 0 and 1 representing the connection block flexi-
bility between the connecting routing resources; a value of 0.5 for example means that
only 50% of the switches necessary to connect all the matching tap and drive points
would be implemented.

Optional Attributes

• locationx – (Required when using the special literal "ROUTING") The x grid loca-
tion of inter-block routing.

• locationy – (Required when using the special literal "ROUTING") The y grid loca-
tion of inter-block routing.

Note: A single <tap> statement may create multiple connections if either the of the from or to correspond
to multiple routing resources. In such cases the fc_val can control how many connections are created.

Note: locationx and locationy describe an (x,y) grid loction where all the wires passing this location
source the source the clock network connection depending on the fc_val

For more information you may wish to consult [Abb19] which introduces the clock modeling language.
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4.1.11 Power

Additional power options are specified within the <architecture> level <power> section.

See also:

See Power Estimation for full documentation on how to perform power estimation.

<local_interconnect C_wire="float" factor="float"/>
Required Attributes

• C_wire – The local interconnect capacitance in Farads/Meter.

Optional Attributes

• factor – The local interconnect scaling factor. Default: 0.5.

<buffers logical_effort_factor="float"/>
Required Attributes

• logical_effort_factor – Default: 4.

4.1.12 Direct Inter-block Connections

The content within the <directlist> tag consists of a group of <direct> tags. The <direct> tag and its
contents are described below.

<direct name="string" from_pin="string" to_pin="string" x_offset="int" y_offset="int" z_offset="int" switch_name="string"/>
Required Attributes

• name – is a unique alphanumeric string to name the connection.

• from_pin – pin of complex block that drives the connection.

• to_pin – pin of complex block that receives the connection.

• x_offset – The x location of the receiving CLB relative to the driving CLB.

• y_offset – The y location of the receiving CLB relative to the driving CLB.

• z_offset – The z location of the receiving CLB relative to the driving CLB.

Optional Attributes

• switch_name – [Optional, defaults to delay-less switch if not specified] The name of
the <switch> from <switchlist> to be used for this direct connection.

• from_side – The associated from_pin’s block size (must be one of left, right,
top, bottom or left unspecified)

• to_side – The associated to_pin’s block size (must be one of left, right, top,
bottom or left unspecified)

Describes a dedicated connection between two complex block pins that skips general interconnect. This is useful
for describing structures such as carry chains as well as adjacent neighbour connections.

The from_side and to_side options can usually be left unspecified. However they can be used to explicitly
control how directs to physically equivalent pins (which may appear on multiple sides) are handled.

Example: Consider a carry chain where the cout of each CLB drives the cin of the CLB immediately below
it, using the delay-less switch one would enter the following:

<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_
→˓offset="-1" z_offset="0"/>
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4.1.13 Custom Switch Blocks

The content under the <switchblocklist> tag consists of one or more <switchblock> tags that are used to
specify connections between different segment types. An example is shown below:

<switchblocklist>
<switchblock name="my_switchblock" type="unidir">

<switchblock_location type="EVERYWHERE"/>
<switchfuncs>
<func type="lr" formula="t"/>
<func type="lt" formula="W-t"/>
<func type="lb" formula="W+t-1"/>
<func type="rt" formula="W+t-1"/>
<func type="br" formula="W-t-2"/>
<func type="bt" formula="t"/>
<func type="rl" formula="t"/>
<func type="tl" formula="W-t"/>
<func type="bl" formula="W+t-1"/>
<func type="tr" formula="W+t-1"/>
<func type="rb" formula="W-t-2"/>
<func type="tb" formula="t"/>

</switchfuncs>
<wireconn from_type="l4" to_type="l4" from_switchpoint="0,1,2,3" to_

→˓switchpoint="0"/>
<wireconn from_type="l8_global" to_type="l8_global" from_switchpoint="0,4

→˓"
to_switchpoint="0"/>

<wireconn from_type="l8_global" to_type="l4" from_switchpoint="0,4"
to_switchpoint="0"/>

</switchblock>

<switchblock name="another_switch_block" type="unidir">
... another switch block description ...

</switchblock>
</switchblocklist>

This switch block format allows a user to specify mathematical permutation functions that describe how different types
of segments (defined in the architecture file under the <segmentlist> tag) will connect to each other at different
switch points. The concept of a switch point is illustrated below for a length-4 unidirectional wire heading in the “left”
direction. The switch point at the start of the wire is given an index of 0 and is incremented by 1 at each subsequent
switch block until the last switch point. The last switch point has an index of 0 because it is shared between the end of
the current segment and the start of the next one (similarly to how switch point 3 is shared by the two wire subsegments
on each side).

Fig. 4.24: Switch point diagram.

A collection of wire types and switch points defines a set of wires which will be connected to another set of wires
with the specified permutation functions (the ‘sets’ of wires are defined using the <wireconn> tags). This format
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allows for an abstract but very flexible way of specifying different switch block patterns. For additional discussion on
interconnect modeling see [Pet16]. The full format is documented below.

Overall Notes:

1. The <sb type="pattern"> tag on a wire segment (described under <segmentlist>) is applied as a
mask on the patterns created by this switch block format; anywhere along a wire’s length where a switch block
has not been requested (set to 0 in this tag), no switches will be added.

2. You can specify multiple switchblock tags, and the switches described by the union of all those switch blocks
will be created.

<switchblock name="string" type="string">
Required Attributes

• name – A unique alphanumeric string

• type – unidir or bidir. A bidirectional switch block will implicitly mirror the
specified permutation functions – e.g. if a permutation function of type lr (func-
tion used to connect wires from the left to the right side of a switch block) has been
specified, a reverse permutation function of type rl (right-to-left) is automatically
assumed. A unidirectional switch block makes no such implicit assumptions. The
type of switch block must match the directionality of the segments defined under the
<segmentlist> node.

<switchblock> is the top-level XML node used to describe connections between different segment types.

<switchblock_location type="string"/>
Required Attributes

• type – Can be one of the following strings:

– EVERYWHERE – at each switch block of the FPGA

– PERIMETER – at each perimeter switch block (x-directed and/or y-directed chan-
nel segments may terminate here)

– CORNER – only at the corner switch blocks (both x and y-directed channels termi-
nate here)

– FRINGE – same as PERIMETER but excludes corners

– CORE – everywhere but the perimeter
Sets the location on the FPGA where the connections described by this switch block will be instantiated.

<switchfuncs>
The switchfuncs XML node contains one or more entries that specify the permutation functions with which
different switch block sides should be connected, as described below.

<func type="string" formula="string"/>
Required Attributes

• type – Specifies which switch block sides this function should connect. With the
switch block sides being left, top, right and bottom, the allowed entries are one of {lt,
lr, lb, tr, tb, tl, rb, rl, rt, bl, bt, br} where lt means that the specified
permutation formula will be used to connect the left-top sides of the switch block.

Note: In a bidirectional architecture the reverse connection is implicit.

• formula – Specifies the mathematical permutation function that determines the pat-
tern with which the source/destination sets of wires (defined using the <wireconn> en-
tries) at the two switch block sides will be connected. For example, W-t specifies a
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connection where the t’th wire in the source set will connect to the W-t wire in the
destination set where W is the number of wires in the destination set and the formula is
implicitly treated as modulo W.

Special characters that can be used in a formula are:

– t – the index of a wire in the source set

– W – the number of wires in the destination set (which is not necessarily the total
number of wires in the channel)

The operators that can be used in the formula are:

– Addition (+)

– Subtraction (-)

– Multiplication (*)

– Division (/)

– Brackets ( and ) are allowed and spaces are ignored.
Defined under the <switchfuncs> XML node, one or more <func...> entries is used to specify permu-
tation functions that connect different sides of a switch block.

<wireconn num_conns="expr" from_type="string, string, string, ..." to_type="string, string, string, ..." from_switchpoint="int, int, int, ..." to_switchpoint="int, int, int, ..." from_order="{fixed | shuffled}" to_order="{fixed | shuffled}"/>
Required Attributes

• num_conns – Specifies how many connections should be created between the
from_type/from_switchpoint set and the to_type/to_switchpoint set. The value of this
parameter is an expression which is evaluated when the switch block is constructed.

The expression can be a single number or formula using the variables:

– from – The number of switchblock edges equal to the ‘from’ set size.

This ensures that each element in the ‘from’ set is connected to an element
of the ‘to’ set. However it may leave some elements of the ‘to’ set either
multiply-connected or disconnected.

– to – The number of switchblock edges equal to the ‘to’ set size size.
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This ensures that each element of the ‘to’ set is connected to precisely one
element of the ‘from’ set. However it may leave some elements of the
‘from’ set either multiply-connected or disconnected.

Examples:

– min(from,to) – Creates number of switchblock edges equal to the minimum
of the ‘from’ and ‘to’ set sizes.

This ensures no element of the ‘from’ or ‘to’ sets is connected to multiple
elements in the opposing set. However it may leave some elements in the
larger set disconnected.

– max(from,to) – Creates number of switchblock edges equal to the maximum
of the ‘from’ and ‘to’ set sizes.

This ensures all elements of the ‘from’ or ‘to’ sets are connected to at least
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one element in the opposing set. However some elements in the smaller
set may be multiply-connected.

– 3*to – Creates number of switchblock edges equal to three times the ‘to’ set sizes.

• from_type – A comma-separated list segment names that defines which segment
types will be a source of a connection. The segment names specified must match the
names of the segments defined under the <segmentlist> XML node. Required if
no <from> or <to> nodes are specified within the <wireconn>.

• to_type – A comma-separated list of segment names that defines which segment
types will be the destination of the connections specified. Each segment name must
match an entry in the <segmentlist> XML node. Required if no <from> or <to>
nodes are specified within the <wireconn>.

• from_switchpoint – A comma-separated list of integers that defines which switch-
points will be a source of a connection. Required if no <from> or <to> nodes are
specified within the <wireconn>.

• to_switchpoint – A comma-separated list of integers that defines which switch-
points will be the destination of the connections specified. Required if no <from> or
<to> nodes are specified within the <wireconn>.

Note: In a unidirectional architecture wires can only be driven at their start point so
to_switchpoint="0" is the only legal specification in this case.

Optional Attributes

• from_order – Specifies the order in which ``from_switchpoint``s are selected when
creating edges.

– fixed – Switchpoints are selected in the order specified

This is useful to specify a preference for connecting to specific switch-
points. For example,
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<wireconn num_conns="1*to" from_type="L16" from_
→˓switchpoint="0,12,8,4" from_order="fixed" to_type=
→˓"L4" to_switchpoint="0"/>

specifies L4 wires should be connected first to L16 at switchpoint 0, then
at switchpoints 12, 8, and 4. This is primarily useful when we want to
ensure that some switchpoints are ‘used-up’ first.

– shuffled – Switchpoints are selected in a (randomly) shuffled order

This is useful to ensure a diverse set of switchpoints are used. For example,

<wireconn num_conns="1*to" from_type="L4" from_
→˓switchpoint="0,1,2,3" from_order="shuffled" to_type=
→˓"L4" to_switchpoint="0"/>

specifies L4 wires should be connected to other L4 wires at any of switch-
points 0, 1, 2, or 3. Shuffling the switchpoints is useful if one of the sets
(e.g. from L4’s) is much larger than the other (e.g. to L4’s), and we wish
to ensure a variety of switchpoints from the larger set are used.

Default: shuffled

• to_order – Specifies the order in which ``to_switchpoint``s are selected when creat-
ing edges.

Note: See from_switchpoint_order for value descritpions.

<from type="string" switchpoint="int, int, int, ..."/>

Required Attributes

• type – The name of a segment specified in the <segmentlist>.

• switchpoint – A comma-separated list of integers that defines switchpoints.

Note: In a unidirectional architecture wires can only be driven at their start point
so to_switchpoint="0" is the only legal specification in this case.

Specifies a subset of source wire switchpoints.

This tag can be specified multiple times. The surrounding <wireconn>’s source set is the union of all
contained <from> tags.

<to type="string" switchpoint="int, int, int, ..."/>
Specifies a subset of destination wire switchpoints.

This tag can be specified multiple times. The surrounding <wireconn>’s destination set is the union of
all contained <to> tags.

See also:

<from> for attribute descriptions.

As an example, consider the following <wireconn> specification:

<wireconn num_conns_type="to"/>
<from type="L4" switchpoint="0,1,2,3"/>
<from type="L16" switchpoint="0,4,8,12"/>

(continues on next page)
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<to type="L4" switchpoint="0/>
</wireconn>

This specifies that the ‘from’ set is the union of L4 switchpoints 0, 1, 2 and 3; and L16 switchpoints 0, 4, 8
and 12. The ‘to’ set is all L4 switchpoint 0’s. Note that since different switchpoints are selected from different
segment types it is not possible to specify this without using <from> sub-tags.

4.1.14 Architecture metadata

Architecture metadata enables tagging of architecture or routing graph information that exists outside of the normal
VPR flow (e.g. pack, place, route, etc). For example this could be used to enable bitstream generation by tagging
routing edges and pb_type features.

The metadata will not be used by the vpr executable, but can be leveraged by new tools using the libvpr library. These
new tools can access the metadata on the various VPR internal data structures.

To enable tagging of architecture structures with metadata, the <metadata> tag can be inserted under the following
XML tags:

• <pb_type>

• Any tag under <interconnect> (<direct>, <mux>, etc).

• <mode>

• Any grid location type (<perimeter>, <fill>, <corners>, <single>, <col>, <row>, <region>)

<metadata>

Specifies the root of a metadata block. Can have 0 or more <meta> Children.

<meta name="string" >
Required Attributes

• name – Key name of this metadata value.

Specifies a value within a metadata block. The name is a key for looking up the value contained within the <meta>
tag. Keys can be repeated, and will be stored in a vector in order of occurrence.

The value of the <meta> is the text in the block. Both the name and <meta> value will be stored as a string. XML
children are not supported in the <meta> tag.

Example of a metadata block with 2 keys:

<metadata>
<meta name="some_key">Some value</meta>
<meta name="other key!">Other value!</meta>

</metadata>
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4.2 Example Architecture Specification

The listing below is for an FPGA with I/O pads, soft logic blocks (called CLB), configurable memory hard blocks,
and fracturable multiplier hard blocks.

Notice that for the CLB, all the inputs are logically equivalent (line 157), and all the outputs are logically equivalent
(line 158). This is usually true for cluster-based logic blocks, as the local routing within the block usually provides
full (or near full) connectivity.

However, for other logic blocks, the inputs and all the outputs are not logically equivalent. For example, consider the
memory block (lines 311-316). Swapping inputs going into the data input port changes the logic of the block because
the data output order no longer matches the data input.

1 <!-- VPR Architecture Specification File -->
2 <!-- Quick XML Primer:
3 * Data is hierarchical and composed of tags (similar to HTML)
4 * All tags must be of the form <foo>content</foo> OR <foo /> with the latter form

→˓indicating no content. Don't forget the slash at the end.
5 * Inside a start tag you may specify attributes in the form key="value". Refer to

→˓manual for the valid attributes for each element.
6 * Comments may be included anywhere in the document except inside a tag where it

→˓'s attribute list is defined.
7 * Comments may contain any characters except two dashes.
8 -->
9 <!-- Architecture based off Stratix IV

10 Use closest ifar architecture: K06 N10 45nm fc 0.15 area-delay optimized, scale
→˓to 40 nm using linear scaling

11 n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml
12 * because documentation sparser for soft logic (delays not in QUIP), harder to

→˓track down, not worth our time considering the level of accuracy is approximate
13 * delays multiplied by 40/45 to normalize for process difference between

→˓stratix 4 and 45 nm technology (called full scaling)
14

15 Use delay numbers off Altera device handbook:
16

17 http://www.altera.com/literature/hb/stratix-iv/stx4_5v1.pdf
18 http://www.altera.com/literature/hb/stratix-iv/stx4_siv51004.pdf
19 http://www.altera.com/literature/hb/stratix-iv/stx4_siv51003.pdf
20 multipliers at 600 MHz, no detail on 9x9 vs 36x36
21 * datasheets unclear
22 * claims 4 18x18 independant multipliers, following test indicates that this

→˓is not the case:
23 created 4 18x18 mulitpliers, logiclocked them to a single DSP block, compile
24 result - 2 18x18 multipliers got packed together, the other 2 got ejected

→˓out of the logiclock region without error
25 conclusion - just take the 600 MHz as is, and Quartus II logiclock hasn't

→˓fixed the bug that I've seen it do to registers when I worked at Altera (ie. eject
→˓without warning)

26 -->
27 <architecture>
28 <!-- ODIN II specific config -->
29 <models>
30 <model name="multiply">
31 <input_ports>
32 <port name="a" combinational_sink_ports="out"/>
33 <port name="b" combinational_sink_ports="out"/>
34 </input_ports>

(continues on next page)
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35 <output_ports>
36 <port name="out"/>
37 </output_ports>
38 </model>
39 <model name="single_port_ram">
40 <input_ports>
41 <port name="we" clock="clk"/>
42 <!-- control -->
43 <port name="addr" clock="clk"/>
44 <!-- address lines -->
45 <port name="data" clock="clk"/>
46 <!-- data lines can be broken down into smaller bit widths minimum size 1 -->
47 <port name="clk" is_clock="1"/>
48 <!-- memories are often clocked -->
49 </input_ports>
50 <output_ports>
51 <port name="out" clock="clk"/>
52 <!-- output can be broken down into smaller bit widths minimum size 1 -->
53 </output_ports>
54 </model>
55 <model name="dual_port_ram">
56 <input_ports>
57 <port name="we1" clock="clk"/>
58 <!-- write enable -->
59 <port name="we2" clock="clk"/>
60 <!-- write enable -->
61 <port name="addr1" clock="clk"/>
62 <!-- address lines -->
63 <port name="addr2" clock="clk"/>
64 <!-- address lines -->
65 <port name="data1" clock="clk"/>
66 <!-- data lines can be broken down into smaller bit widths minimum size 1 -->
67 <port name="data2" clock="clk"/>
68 <!-- data lines can be broken down into smaller bit widths minimum size 1 -->
69 <port name="clk" is_clock="1"/>
70 <!-- memories are often clocked -->
71 </input_ports>
72 <output_ports>
73 <port name="out1" clock="clk"/>
74 <!-- output can be broken down into smaller bit widths minimum size 1 -->
75 <port name="out2" clock="clk"/>
76 <!-- output can be broken down into smaller bit widths minimum size 1 -->
77 </output_ports>
78 </model>
79 </models>
80 <tiles>
81 <tile name="io" capacity="8">
82 <equivalent_sites>
83 <site pb_type="io" pin_mapping="direct"/>
84 </equivalent_sites>
85 <input name="outpad" num_pins="1"/>
86 <output name="inpad" num_pins="1"/>
87 <clock name="clock" num_pins="1"/>
88 <fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
89 <pinlocations pattern="custom">
90 <loc side="left">io.outpad io.inpad io.clock</loc>
91 <loc side="top">io.outpad io.inpad io.clock</loc>

(continues on next page)
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92 <loc side="right">io.outpad io.inpad io.clock</loc>
93 <loc side="bottom">io.outpad io.inpad io.clock</loc>
94 </pinlocations>
95 </tile>
96 <tile name="clb">
97 <equivalent_sites>
98 <site pb_type="clb" pin_mapping="direct"/>
99 </equivalent_sites>

100 <input name="I" num_pins="33" equivalent="full"/>
101 <output name="O" num_pins="10" equivalent="instance"/>
102 <clock name="clk" num_pins="1"/>
103 <fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
104 <pinlocations pattern="spread"/>
105 </tile>
106 <tile name="mult_36" height="4">
107 <equivalent_sites>
108 <site pb_type="mult_36" pin_mapping="direct"/>
109 </equivalent_sites>
110 <input name="a" num_pins="36"/>
111 <input name="b" num_pins="36"/>
112 <output name="out" num_pins="72"/>
113 <pinlocations pattern="spread"/>
114 </tile>
115 <tile name="memory" height="6">
116 <equivalent_sites>
117 <site pb_type="memory" pin_mapping="direct"/>
118 </equivalent_sites>
119 <input name="addr1" num_pins="17"/>
120 <input name="addr2" num_pins="17"/>
121 <input name="data" num_pins="72"/>
122 <input name="we1" num_pins="1"/>
123 <input name="we2" num_pins="1"/>
124 <output name="out" num_pins="72"/>
125 <clock name="clk" num_pins="1"/>
126 <fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
127 <pinlocations pattern="spread"/>
128 </tile>
129 </tiles>
130 <!-- ODIN II specific config ends -->
131 <!-- Physical descriptions begin (area optimized for N8-K6-L4 -->
132 <layout>
133 <auto_layout aspect_ratio="1.0">
134 <!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
135 <perimeter type="io" priority="100"/>
136 <corners type="EMPTY" priority="101"/>
137 <!--Fill with 'clb'-->
138 <fill type="clb" priority="10"/>
139 <!--Column of 'mult_36' with 'EMPTY' blocks wherever a 'mult_36' does not fit.

→˓Vertical offset by 1 for perimeter.-->
140 <col type="mult_36" startx="4" starty="1" repeatx="8" priority="20"/>
141 <col type="EMPTY" startx="4" repeatx="8" starty="1" priority="19"/>
142 <!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit.

→˓Vertical offset by 1 for perimeter.-->
143 <col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
144 <col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
145 </auto_layout>
146 </layout>
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147 <device>
148 <sizing R_minW_nmos="6065.520020" R_minW_pmos="18138.500000"/>
149 <area grid_logic_tile_area="14813.392"/>
150 <!--area is for soft logic only-->
151 <chan_width_distr>
152 <x distr="uniform" peak="1.000000"/>
153 <y distr="uniform" peak="1.000000"/>
154 </chan_width_distr>
155 <switch_block type="wilton" fs="3"/>
156 <connection_block input_switch_name="ipin_cblock"/>
157 </device>
158 <switchlist>
159 <switch type="mux" name="0" R="0.000000" Cin="0.000000e+00" Cout="0.000000e+00"

→˓Tdel="6.837e-11" mux_trans_size="2.630740" buf_size="27.645901"/>
160 <!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength

→˓buffer-->
161 <switch type="mux" name="ipin_cblock" R="1516.380005" Cout="0." Cin="0.000000e+00

→˓" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
162 </switchlist>
163 <segmentlist>
164 <segment freq="1.000000" length="4" type="unidir" Rmetal="0.000000" Cmetal="0.

→˓000000e+00">
165 <mux name="0"/>
166 <sb type="pattern">1 1 1 1 1</sb>
167 <cb type="pattern">1 1 1 1</cb>
168 </segment>
169 </segmentlist>
170 <complexblocklist>
171 <!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that

→˓can be placed at the same (X,Y) location on the FPGA -->
172 <pb_type name="io">
173 <input name="outpad" num_pins="1"/>
174 <output name="inpad" num_pins="1"/>
175 <clock name="clock" num_pins="1"/>
176 <!-- IOs can operate as either inputs or outputs -->
177 <mode name="inpad">
178 <pb_type name="inpad" blif_model=".input" num_pb="1">
179 <output name="inpad" num_pins="1"/>
180 </pb_type>
181 <interconnect>
182 <direct name="inpad" input="inpad.inpad" output="io.inpad">
183 <delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/

→˓>
184 </direct>
185 </interconnect>
186 </mode>
187 <mode name="outpad">
188 <pb_type name="outpad" blif_model=".output" num_pb="1">
189 <input name="outpad" num_pins="1"/>
190 </pb_type>
191 <interconnect>
192 <direct name="outpad" input="io.outpad" output="outpad.outpad">
193 <delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.

→˓outpad"/>
194 </direct>
195 </interconnect>
196 </mode>
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197 <!-- IOs go on the periphery of the FPGA, for consistency,
198 make it physically equivalent on all sides so that only one definition of

→˓I/Os is needed.
199 If I do not make a physically equivalent definition, then I need to define

→˓4 different I/Os, one for each side of the FPGA
200 -->
201 </pb_type>
202 <pb_type name="clb">
203 <input name="I" num_pins="33" equivalent="full"/><!-- NOTE: Logically

→˓Equivalent -->
204 <output name="O" num_pins="10" equivalent="instance"/><!-- NOTE: Logically

→˓Equivalent -->
205 <clock name="clk" num_pins="1"/>
206 <!-- Describe basic logic element -->
207 <pb_type name="ble" num_pb="10">
208 <input name="in" num_pins="6"/>
209 <output name="out" num_pins="1"/>
210 <clock name="clk" num_pins="1"/>
211 <pb_type name="soft_logic" num_pb="1">
212 <input name="in" num_pins="6"/>
213 <output name="out" num_pins="1"/>
214 <mode name="n1_lut6">
215 <pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
216 <input name="in" num_pins="6" port_class="lut_in"/>
217 <output name="out" num_pins="1" port_class="lut_out"/>
218 <!-- LUT timing using delay matrix -->
219 <delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
220 2.690e-10
221 2.690e-10
222 2.690e-10
223 2.690e-10
224 2.690e-10
225 2.690e-10
226 </delay_matrix>
227 </pb_type>
228 <interconnect>
229 <direct name="direct1" input="soft_logic.in[5:0]" output="lut6[0:0].

→˓in[5:0]"/>
230 <direct name="direct2" input="lut6[0:0].out" output="soft_logic.out[0:0]

→˓"/>
231 </interconnect>
232 </mode>
233 </pb_type>
234 <pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
235 <input name="D" num_pins="1" port_class="D"/>
236 <output name="Q" num_pins="1" port_class="Q"/>
237 <clock name="clk" num_pins="1" port_class="clock"/>
238 <T_setup value="2.448e-10" port="ff.D" clock="clk"/>
239 <T_clock_to_Q max="7.732e-11" port="ff.Q" clock="clk"/>
240 </pb_type>
241 <interconnect>
242 <!-- Two ff, make ff available to only corresponding luts -->
243 <direct name="direct1" input="ble.in" output="soft_logic.in"/>
244 <direct name="direct2" input="soft_logic.out" output="ff.D"/>
245 <direct name="direct4" input="ble.clk" output="ff.clk"/>
246 <mux name="mux1" input="ff.Q soft_logic.out" output="ble.out"/>
247 </interconnect>
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248 </pb_type>
249 <interconnect>
250 <complete name="crossbar" input="clb.I ble[9:0].out" output="ble[9:0].in">
251 <delay_constant max="8.044000e-11" in_port="clb.I" out_port="ble[9:0].in"/>
252 <delay_constant max="7.354000e-11" in_port="ble[9:0].out" out_port=

→˓"ble[9:0].in"/>
253 </complete>
254 <complete name="clks" input="clb.clk" output="ble[9:0].clk"/>
255 <direct name="clbouts" input="ble[9:0].out" output="clb.O"/>
256 </interconnect>
257 </pb_type>
258 <!-- This is the 36*36 uniform mult -->
259 <pb_type name="mult_36">
260 <input name="a" num_pins="36"/>
261 <input name="b" num_pins="36"/>
262 <output name="out" num_pins="72"/>
263 <mode name="two_divisible_mult_18x18">
264 <pb_type name="divisible_mult_18x18" num_pb="2">
265 <input name="a" num_pins="18"/>
266 <input name="b" num_pins="18"/>
267 <output name="out" num_pins="36"/>
268 <mode name="two_mult_9x9">
269 <pb_type name="mult_9x9_slice" num_pb="2">
270 <input name="A_cfg" num_pins="9"/>
271 <input name="B_cfg" num_pins="9"/>
272 <output name="OUT_cfg" num_pins="18"/>
273 <pb_type name="mult_9x9" blif_model=".subckt multiply" num_pb="1">
274 <input name="a" num_pins="9"/>
275 <input name="b" num_pins="9"/>
276 <output name="out" num_pins="18"/>
277 <delay_constant max="1.667e-9" in_port="mult_9x9.a" out_port="mult_

→˓9x9.out"/>
278 <delay_constant max="1.667e-9" in_port="mult_9x9.b" out_port="mult_

→˓9x9.out"/>
279 </pb_type>
280 <interconnect>
281 <direct name="a2a" input="mult_9x9_slice.A_cfg" output="mult_9x9.a"/>
282 <direct name="b2b" input="mult_9x9_slice.B_cfg" output="mult_9x9.b"/>
283 <direct name="out2out" input="mult_9x9.out" output="mult_9x9_slice.

→˓OUT_cfg"/>
284 </interconnect>
285 </pb_type>
286 <interconnect>
287 <direct name="a2a" input="divisible_mult_18x18.a" output="mult_9x9_

→˓slice[1:0].A_cfg"/>
288 <direct name="b2b" input="divisible_mult_18x18.b" output="mult_9x9_

→˓slice[1:0].B_cfg"/>
289 <direct name="out2out" input="mult_9x9_slice[1:0].OUT_cfg" output=

→˓"divisible_mult_18x18.out"/>
290 </interconnect>
291 </mode>
292 <mode name="mult_18x18">
293 <pb_type name="mult_18x18_slice" num_pb="1">
294 <input name="A_cfg" num_pins="18"/>
295 <input name="B_cfg" num_pins="18"/>
296 <output name="OUT_cfg" num_pins="36"/>
297 <pb_type name="mult_18x18" blif_model=".subckt multiply" num_pb="1">
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298 <input name="a" num_pins="18"/>
299 <input name="b" num_pins="18"/>
300 <output name="out" num_pins="36"/>
301 <delay_constant max="1.667e-9" in_port="mult_18x18.a" out_port="mult_

→˓18x18.out"/>
302 <delay_constant max="1.667e-9" in_port="mult_18x18.b" out_port="mult_

→˓18x18.out"/>
303 </pb_type>
304 <interconnect>
305 <direct name="a2a" input="mult_18x18_slice.A_cfg" output="mult_18x18.a

→˓"/>
306 <direct name="b2b" input="mult_18x18_slice.B_cfg" output="mult_18x18.b

→˓"/>
307 <direct name="out2out" input="mult_18x18.out" output="mult_18x18_

→˓slice.OUT_cfg"/>
308 </interconnect>
309 </pb_type>
310 <interconnect>
311 <direct name="a2a" input="divisible_mult_18x18.a" output="mult_18x18_

→˓slice.A_cfg"/>
312 <direct name="b2b" input="divisible_mult_18x18.b" output="mult_18x18_

→˓slice.B_cfg"/>
313 <direct name="out2out" input="mult_18x18_slice.OUT_cfg" output=

→˓"divisible_mult_18x18.out"/>
314 </interconnect>
315 </mode>
316 </pb_type>
317 <interconnect>
318 <direct name="a2a" input="mult_36.a" output="divisible_mult_18x18[1:0].a"/>
319 <direct name="b2b" input="mult_36.b" output="divisible_mult_18x18[1:0].b"/>
320 <direct name="out2out" input="divisible_mult_18x18[1:0].out" output="mult_

→˓36.out"/>
321 </interconnect>
322 </mode>
323 <mode name="mult_36x36">
324 <pb_type name="mult_36x36_slice" num_pb="1">
325 <input name="A_cfg" num_pins="36"/>
326 <input name="B_cfg" num_pins="36"/>
327 <output name="OUT_cfg" num_pins="72"/>
328 <pb_type name="mult_36x36" blif_model=".subckt multiply" num_pb="1">
329 <input name="a" num_pins="36"/>
330 <input name="b" num_pins="36"/>
331 <output name="out" num_pins="72"/>
332 <delay_constant max="1.667e-9" in_port="mult_36x36.a" out_port="mult_

→˓36x36.out"/>
333 <delay_constant max="1.667e-9" in_port="mult_36x36.b" out_port="mult_

→˓36x36.out"/>
334 </pb_type>
335 <interconnect>
336 <direct name="a2a" input="mult_36x36_slice.A_cfg" output="mult_36x36.a"/>
337 <direct name="b2b" input="mult_36x36_slice.B_cfg" output="mult_36x36.b"/>
338 <direct name="out2out" input="mult_36x36.out" output="mult_36x36_slice.

→˓OUT_cfg"/>
339 </interconnect>
340 </pb_type>
341 <interconnect>
342 <direct name="a2a" input="mult_36.a" output="mult_36x36_slice.A_cfg"/>
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343 <direct name="b2b" input="mult_36.b" output="mult_36x36_slice.B_cfg"/>
344 <direct name="out2out" input="mult_36x36_slice.OUT_cfg" output="mult_36.out

→˓"/>
345 </interconnect>
346 </mode>
347 <fc_in type="frac">0.15</fc_in>
348 <fc_out type="frac">0.10</fc_out>
349 </pb_type>
350 <!-- Memory based off Stratix IV 144K memory. Setup time set to match flip-flop

→˓setup time at 45 nm. Clock to q based off 144K max MHz -->
351 <pb_type name="memory">
352 <input name="addr1" num_pins="17"/>
353 <input name="addr2" num_pins="17"/>
354 <input name="data" num_pins="72"/>
355 <input name="we1" num_pins="1"/>
356 <input name="we2" num_pins="1"/>
357 <output name="out" num_pins="72"/>
358 <clock name="clk" num_pins="1"/>
359 <mode name="mem_2048x72_sp">
360 <pb_type name="mem_2048x72_sp" blif_model=".subckt single_port_ram" class=

→˓"memory" num_pb="1">
361 <input name="addr" num_pins="11" port_class="address"/>
362 <input name="data" num_pins="72" port_class="data_in"/>
363 <input name="we" num_pins="1" port_class="write_en"/>
364 <output name="out" num_pins="72" port_class="data_out"/>
365 <clock name="clk" num_pins="1" port_class="clock"/>
366 <T_setup value="2.448e-10" port="mem_2048x72_sp.addr" clock="clk"/>
367 <T_setup value="2.448e-10" port="mem_2048x72_sp.data" clock="clk"/>
368 <T_setup value="2.448e-10" port="mem_2048x72_sp.we" clock="clk"/>
369 <T_clock_to_Q max="1.852e-9" port="mem_2048x72_sp.out" clock="clk"/>
370 </pb_type>
371 <interconnect>
372 <direct name="address1" input="memory.addr1[10:0]" output="mem_2048x72_sp.

→˓addr"/>
373 <direct name="data1" input="memory.data[71:0]" output="mem_2048x72_sp.data"/

→˓>
374 <direct name="writeen1" input="memory.we1" output="mem_2048x72_sp.we"/>
375 <direct name="dataout1" input="mem_2048x72_sp.out" output="memory.out[71:0]

→˓"/>
376 <direct name="clk" input="memory.clk" output="mem_2048x72_sp.clk"/>
377 </interconnect>
378 </mode>
379 <mode name="mem_4096x36_dp">
380 <pb_type name="mem_4096x36_dp" blif_model=".subckt dual_port_ram" class=

→˓"memory" num_pb="1">
381 <input name="addr1" num_pins="12" port_class="address1"/>
382 <input name="addr2" num_pins="12" port_class="address2"/>
383 <input name="data1" num_pins="36" port_class="data_in1"/>
384 <input name="data2" num_pins="36" port_class="data_in2"/>
385 <input name="we1" num_pins="1" port_class="write_en1"/>
386 <input name="we2" num_pins="1" port_class="write_en2"/>
387 <output name="out1" num_pins="36" port_class="data_out1"/>
388 <output name="out2" num_pins="36" port_class="data_out2"/>
389 <clock name="clk" num_pins="1" port_class="clock"/>
390 <T_setup value="2.448e-10" port="mem_4096x36_dp.addr1" clock="clk"/>
391 <T_setup value="2.448e-10" port="mem_4096x36_dp.data1" clock="clk"/>
392 <T_setup value="2.448e-10" port="mem_4096x36_dp.we1" clock="clk"/>
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393 <T_setup value="2.448e-10" port="mem_4096x36_dp.addr2" clock="clk"/>
394 <T_setup value="2.448e-10" port="mem_4096x36_dp.data2" clock="clk"/>
395 <T_setup value="2.448e-10" port="mem_4096x36_dp.we2" clock="clk"/>
396 <T_clock_to_Q max="1.852e-9" port="mem_4096x36_dp.out1" clock="clk"/>
397 <T_clock_to_Q max="1.852e-9" port="mem_4096x36_dp.out2" clock="clk"/>
398 </pb_type>
399 <interconnect>
400 <direct name="address1" input="memory.addr1[11:0]" output="mem_4096x36_dp.

→˓addr1"/>
401 <direct name="address2" input="memory.addr2[11:0]" output="mem_4096x36_dp.

→˓addr2"/>
402 <direct name="data1" input="memory.data[35:0]" output="mem_4096x36_dp.data1

→˓"/>
403 <direct name="data2" input="memory.data[71:36]" output="mem_4096x36_dp.data2

→˓"/>
404 <direct name="writeen1" input="memory.we1" output="mem_4096x36_dp.we1"/>
405 <direct name="writeen2" input="memory.we2" output="mem_4096x36_dp.we2"/>
406 <direct name="dataout1" input="mem_4096x36_dp.out1" output="memory.out[35:0]

→˓"/>
407 <direct name="dataout2" input="mem_4096x36_dp.out2" output="memory.

→˓out[71:36]"/>
408 <direct name="clk" input="memory.clk" output="mem_4096x36_dp.clk"/>
409 </interconnect>
410 </mode>
411 <mode name="mem_4096x36_sp">
412 <pb_type name="mem_4096x36_sp" blif_model=".subckt single_port_ram" class=

→˓"memory" num_pb="1">
413 <input name="addr" num_pins="12" port_class="address"/>
414 <input name="data" num_pins="36" port_class="data_in"/>
415 <input name="we" num_pins="1" port_class="write_en"/>
416 <output name="out" num_pins="36" port_class="data_out"/>
417 <clock name="clk" num_pins="1" port_class="clock"/>
418 <T_setup value="2.448e-10" port="mem_4096x36_sp.addr" clock="clk"/>
419 <T_setup value="2.448e-10" port="mem_4096x36_sp.data" clock="clk"/>
420 <T_setup value="2.448e-10" port="mem_4096x36_sp.we" clock="clk"/>
421 <T_clock_to_Q max="1.852e-9" port="mem_4096x36_sp.out" clock="clk"/>
422 </pb_type>
423 <interconnect>
424 <direct name="address1" input="memory.addr1[11:0]" output="mem_4096x36_sp.

→˓addr"/>
425 <direct name="data1" input="memory.data[35:0]" output="mem_4096x36_sp.data"/

→˓>
426 <direct name="writeen1" input="memory.we1" output="mem_4096x36_sp.we"/>
427 <direct name="dataout1" input="mem_4096x36_sp.out" output="memory.out[35:0]

→˓"/>
428 <direct name="clk" input="memory.clk" output="mem_4096x36_sp.clk"/>
429 </interconnect>
430 </mode>
431 <mode name="mem_9182x18_dp">
432 <pb_type name="mem_9182x18_dp" blif_model=".subckt dual_port_ram" class=

→˓"memory" num_pb="1">
433 <input name="addr1" num_pins="13" port_class="address1"/>
434 <input name="addr2" num_pins="13" port_class="address2"/>
435 <input name="data1" num_pins="18" port_class="data_in1"/>
436 <input name="data2" num_pins="18" port_class="data_in2"/>
437 <input name="we1" num_pins="1" port_class="write_en1"/>
438 <input name="we2" num_pins="1" port_class="write_en2"/>

(continues on next page)

4.2. Example Architecture Specification 127



Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

439 <output name="out1" num_pins="18" port_class="data_out1"/>
440 <output name="out2" num_pins="18" port_class="data_out2"/>
441 <clock name="clk" num_pins="1" port_class="clock"/>
442 <T_setup value="2.448e-10" port="mem_9182x18_dp.addr1" clock="clk"/>
443 <T_setup value="2.448e-10" port="mem_9182x18_dp.data1" clock="clk"/>
444 <T_setup value="2.448e-10" port="mem_9182x18_dp.we1" clock="clk"/>
445 <T_setup value="2.448e-10" port="mem_9182x18_dp.addr2" clock="clk"/>
446 <T_setup value="2.448e-10" port="mem_9182x18_dp.data2" clock="clk"/>
447 <T_setup value="2.448e-10" port="mem_9182x18_dp.we2" clock="clk"/>
448 <T_clock_to_Q max="1.852e-9" port="mem_9182x18_dp.out1" clock="clk"/>
449 <T_clock_to_Q max="1.852e-9" port="mem_9182x18_dp.out2" clock="clk"/>
450 </pb_type>
451 <interconnect>
452 <direct name="address1" input="memory.addr1[12:0]" output="mem_9182x18_dp.

→˓addr1"/>
453 <direct name="address2" input="memory.addr2[12:0]" output="mem_9182x18_dp.

→˓addr2"/>
454 <direct name="data1" input="memory.data[17:0]" output="mem_9182x18_dp.data1

→˓"/>
455 <direct name="data2" input="memory.data[35:18]" output="mem_9182x18_dp.data2

→˓"/>
456 <direct name="writeen1" input="memory.we1" output="mem_9182x18_dp.we1"/>
457 <direct name="writeen2" input="memory.we2" output="mem_9182x18_dp.we2"/>
458 <direct name="dataout1" input="mem_9182x18_dp.out1" output="memory.out[17:0]

→˓"/>
459 <direct name="dataout2" input="mem_9182x18_dp.out2" output="memory.

→˓out[35:18]"/>
460 <direct name="clk" input="memory.clk" output="mem_9182x18_dp.clk"/>
461 </interconnect>
462 </mode>
463 <mode name="mem_9182x18_sp">
464 <pb_type name="mem_9182x18_sp" blif_model=".subckt single_port_ram" class=

→˓"memory" num_pb="1">
465 <input name="addr" num_pins="13" port_class="address"/>
466 <input name="data" num_pins="18" port_class="data_in"/>
467 <input name="we" num_pins="1" port_class="write_en"/>
468 <output name="out" num_pins="18" port_class="data_out"/>
469 <clock name="clk" num_pins="1" port_class="clock"/>
470 <T_setup value="2.448e-10" port="mem_9182x18_sp.addr" clock="clk"/>
471 <T_setup value="2.448e-10" port="mem_9182x18_sp.data" clock="clk"/>
472 <T_setup value="2.448e-10" port="mem_9182x18_sp.we" clock="clk"/>
473 <T_clock_to_Q max="1.852e-9" port="mem_9182x18_sp.out" clock="clk"/>
474 </pb_type>
475 <interconnect>
476 <direct name="address1" input="memory.addr1[12:0]" output="mem_9182x18_sp.

→˓addr"/>
477 <direct name="data1" input="memory.data[17:0]" output="mem_9182x18_sp.data"/

→˓>
478 <direct name="writeen1" input="memory.we1" output="mem_9182x18_sp.we"/>
479 <direct name="dataout1" input="mem_9182x18_sp.out" output="memory.out[17:0]

→˓"/>
480 <direct name="clk" input="memory.clk" output="mem_9182x18_sp.clk"/>
481 </interconnect>
482 </mode>
483 <mode name="mem_18194x9_dp">
484 <pb_type name="mem_18194x9_dp" blif_model=".subckt dual_port_ram" class=

→˓"memory" num_pb="1">
(continues on next page)
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485 <input name="addr1" num_pins="14" port_class="address1"/>
486 <input name="addr2" num_pins="14" port_class="address2"/>
487 <input name="data1" num_pins="9" port_class="data_in1"/>
488 <input name="data2" num_pins="9" port_class="data_in2"/>
489 <input name="we1" num_pins="1" port_class="write_en1"/>
490 <input name="we2" num_pins="1" port_class="write_en2"/>
491 <output name="out1" num_pins="9" port_class="data_out1"/>
492 <output name="out2" num_pins="9" port_class="data_out2"/>
493 <clock name="clk" num_pins="1" port_class="clock"/>
494 <T_setup value="2.448e-10" port="mem_18194x9_dp.addr1" clock="clk"/>
495 <T_setup value="2.448e-10" port="mem_18194x9_dp.data1" clock="clk"/>
496 <T_setup value="2.448e-10" port="mem_18194x9_dp.we1" clock="clk"/>
497 <T_setup value="2.448e-10" port="mem_18194x9_dp.addr2" clock="clk"/>
498 <T_setup value="2.448e-10" port="mem_18194x9_dp.data2" clock="clk"/>
499 <T_setup value="2.448e-10" port="mem_18194x9_dp.we2" clock="clk"/>
500 <T_clock_to_Q max="1.852e-9" port="mem_18194x9_dp.out1" clock="clk"/>
501 <T_clock_to_Q max="1.852e-9" port="mem_18194x9_dp.out2" clock="clk"/>
502 </pb_type>
503 <interconnect>
504 <direct name="address1" input="memory.addr1[13:0]" output="mem_18194x9_dp.

→˓addr1"/>
505 <direct name="address2" input="memory.addr2[13:0]" output="mem_18194x9_dp.

→˓addr2"/>
506 <direct name="data1" input="memory.data[8:0]" output="mem_18194x9_dp.data1"/

→˓>
507 <direct name="data2" input="memory.data[17:9]" output="mem_18194x9_dp.data2

→˓"/>
508 <direct name="writeen1" input="memory.we1" output="mem_18194x9_dp.we1"/>
509 <direct name="writeen2" input="memory.we2" output="mem_18194x9_dp.we2"/>
510 <direct name="dataout1" input="mem_18194x9_dp.out1" output="memory.out[8:0]

→˓"/>
511 <direct name="dataout2" input="mem_18194x9_dp.out2" output="memory.out[17:9]

→˓"/>
512 <direct name="clk" input="memory.clk" output="mem_18194x9_dp.clk"/>
513 </interconnect>
514 </mode>
515 <mode name="mem_18194x9_sp">
516 <pb_type name="mem_18194x9_sp" blif_model=".subckt single_port_ram" class=

→˓"memory" num_pb="1">
517 <input name="addr" num_pins="14" port_class="address"/>
518 <input name="data" num_pins="9" port_class="data_in"/>
519 <input name="we" num_pins="1" port_class="write_en"/>
520 <output name="out" num_pins="9" port_class="data_out"/>
521 <clock name="clk" num_pins="1" port_class="clock"/>
522 <T_setup value="2.448e-10" port="mem_18194x9_sp.addr" clock="clk"/>
523 <T_setup value="2.448e-10" port="mem_18194x9_sp.data" clock="clk"/>
524 <T_setup value="2.448e-10" port="mem_18194x9_sp.we" clock="clk"/>
525 <T_clock_to_Q max="1.852e-9" port="mem_18194x9_sp.out" clock="clk"/>
526 </pb_type>
527 <interconnect>
528 <direct name="address1" input="memory.addr1[13:0]" output="mem_18194x9_sp.

→˓addr"/>
529 <direct name="data1" input="memory.data[8:0]" output="mem_18194x9_sp.data"/>
530 <direct name="writeen1" input="memory.we1" output="mem_18194x9_sp.we"/>
531 <direct name="dataout1" input="mem_18194x9_sp.out" output="memory.out[8:0]"/

→˓>
532 <direct name="clk" input="memory.clk" output="mem_18194x9_sp.clk"/>
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533 </interconnect>
534 </mode>
535 </pb_type>
536 </complexblocklist>
537 </architecture>
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FIVE

VPR

VPR (Versatile Place and Route) is an open source academic CAD tool designed for the exploration of new FPGA
architectures and CAD algorithms, at the packing, placement and routing phases of the CAD flow [BR97b][LKJ+09].
Since its public introduction, VPR has been used extensively in many academic projects partly because it is robust,
well documented, easy-to-use, and can flexibly target a range of architectures.

VPR takes, as input, a description of an FPGA architecture along with a technology-mapped user circuit. It then
performs packing, placement, and routing to map the circuit onto the FPGA. The output of VPR includes the FPGA
configuration needed to implement the circuit and statistics about the final mapped design (eg. critical path delay, area,
etc).

Placement (carry chains highlighted) Critical Path

Logical Connections Routing Utilization

Motivation

The study of FPGA CAD and architecture can be a challenging process partly because of the difficulty in conducting
high quality experiments. A quality CAD/architecture experiment requires realistic benchmarks, accurate architectural
models, and robust CAD tools that can appropriately map the benchmark to the particular architecture in question. This
is a lot of work. Fortunately, this work can be made easier if open source tools are available as a starting point.

The purpose of VPR is to make the packing, placement, and routing stages of the FPGA CAD flow robust and flexible
so that it is easier for researchers to investigate future FPGAs.

5.1 Basic flow

The Place and Route process in VPR consists of several steps:

• Packing (combinines primitives into complex blocks)

• Placment (places complex blocks within the FPGA grid)

• Routing (determines interconnections between blocks)

• Analysis (analyzes the implementation)

Each of these steps provides additional configuration options that can be used to customize the whole process.
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5.1.1 Packing

The packing algorithm tries to combine primitive netlist blocks (e.g. LUTs, FFs) into groups, called Complex Blocks
(as specified in the FPGA architecture file). The results from the packing process are written into a .net file. It
contains a description of complex blocks with their inputs, outputs, used clocks and relations to other signals. It can
be useful in analyzing how VPR packs primitives together.

A detailed description of the .net file format can be found in the Packed Netlist Format (.net) section.

5.1.2 Placement

This step assigns a location to the Complex Blocks (produced by packing) with the FPGA grid, while optimizing for
wirelength and timing. The output from this step is written to the .place file, which contains the physical location
of the blocks from the .net file.

The file has the following format:

block_name x y subblock_number

where x and y are positions in the VPR grid and block_name comes from the .net file.

Example of a placing file:

Netlist_File: top.net Netlist_ID:
→˓SHA256:ce5217d251e04301759ee5a8f55f67c642de435b6c573148b67c19c5e054c1f9
Array size: 149 x 158 logic blocks

#block name x y subblk block number
#---------- -- -- ------ ------------
$auto$alumacc.cc:474:replace_alu$24.slice[1].carry4_full 53 32 0 #0
$auto$alumacc.cc:474:replace_alu$24.slice[2].carry4_full 53 31 0 #1
$auto$alumacc.cc:474:replace_alu$24.slice[3].carry4_full 53 30 0 #2
$auto$alumacc.cc:474:replace_alu$24.slice[4].carry4_full 53 29 0 #3
$auto$alumacc.cc:474:replace_alu$24.slice[5].carry4_full 53 28 0 #4
$auto$alumacc.cc:474:replace_alu$24.slice[6].carry4_part 53 27 0 #5
$auto$alumacc.cc:474:replace_alu$24.slice[0].carry4_1st_full 53 33 0
→˓ #6
out:LD7 9 5 0 #7
clk 42 26 0 #8
$false 35 26 0 #9

A detailed description of the .place file format can be found in the Placement File Format (.place) section.

5.1.3 Routing

This step determines how to connect the placed Complex Blocks together, according to the netlist connectivity and
the routing resources of the FPGA chip. The router uses a Routing Resource (RR) Graph [BRM99] to represent the
FPGA’s available routing resources. The RR graph can be created in two ways:

1. Automatically generated by VPR from the FPGA architecture description [BR00], or

2. Loaded from an external RR graph file.

The output of routing is written into a .route file. The file describes each connection from input to its output
through different routing resources of the FPGA. Each net starts with a SOURCE node and ends in a SINK node,
potentially passing through complex block input/output pins (IPIN/OPIN nodes) and horizontal/vertical routing wires
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(CHANX/CHANY nodes). The pair of numbers in round brackets provides information on the (x, y) resource location
on the VPR grid. The additional field provides information about the specific node.

An example routing file could look as follows:

Placement_File: top.place Placement_ID:
→˓SHA256:88d45f0bf7999e3f9331cdfd3497d0028be58ffa324a019254c2ae7b4f5bfa7a
Array size: 149 x 158 logic blocks.

Routing:

Net 0 (counter[4])

Node: 203972 SOURCE (53,32) Class: 40 Switch: 0
Node: 204095 OPIN (53,32) Pin: 40 BLK-TL-SLICEL.CQ[0] Switch: 189
Node: 1027363 CHANY (52,32) Track: 165 Switch: 7
Node: 601704 CHANY (52,32) Track: 240 Switch: 161
Node: 955959 CHANY (52,32) to (52,33) Track: 90 Switch: 130
Node: 955968 CHANY (52,32) Track: 238 Switch: 128
Node: 955976 CHANY (52,32) Track: 230 Switch: 131
Node: 601648 CHANY (52,32) Track: 268 Switch: 7
Node: 1027319 CHANY (52,32) Track: 191 Switch: 183
Node: 203982 IPIN (53,32) Pin: 1 BLK-TL-SLICEL.A2[0] Switch: 0
Node: 203933 SINK (53,32) Class: 1 Switch: -1

Net 1 ($auto$alumacc.cc:474:replace_alu$24.O[6])
...

A detailed description of the .route file format can be found in the Routing File Format (.route) section.

5.1.4 Analysis

This step analyzes the resulting implementation, producing information about:

• Resource usage (e.g. block types, wiring)

• Timing (e.g. critical path delays and timing paths)

• Power (e.g. total power used, power broken down by blocks)

Note that VPR’s analysis can be used independently of VPR’s optimization stages, so long as the appropriate .net/.
place/.route files are available.

5.2 Command-line Options

Placement Critical Path Logical Connections Routing Utilization
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5.2.1 Basic Usage

At a minimum VPR requires two command-line arguments:

vpr architecture circuit

where:

architecture
is an FPGA architecture description file

circuit
is the technology mapped netlist in BLIF format to be implemented

VPR will then pack, place, and route the circuit onto the specified architecture.

By default VPR will perform a binary search routing to find the minimum channel width required to route the circuit.

5.2.2 Detailed Command-line Options

VPR has a lot of options. The options most people will be interested in are:

• --route_chan_width (route at a fixed channel width), and

• --disp (turn on/off graphics).

In general for the other options the defaults are fine, and only people looking at how different CAD algorithms perform
will try many of them. To understand what the more esoteric placer and router options actually do, see [BRM99] or
download [BR96a][BR96b][BR97b][MBR00] from the author’s web page.

In the following text, values in angle brackets e.g. <int> <float> <string> <file>, should be replaced by the
appropriate number, string, or file path. Values in curly braces separated by vertical bars, e.g. {on | off}, indicate
all the permissible choices for an option.

Stage Options

VPR runs all stages of (pack, place, route, and analysis) if none of --pack, --place, --route or --analysis
are specified.

--pack
Run packing stage

Default: off

--place
Run placement stage

Default: off

--route
Run routing stage This also implies –analysis if routing was successful.

Default: off

--analysis
Run final analysis stage (e.g. timing, power).

Default: off
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Graphics Options

--disp {on | off}
Controls whether VPR’s interactive graphics are enabled. Graphics are very useful for inspecting and debugging
the FPGA architecture and/or circuit implementation.

Default: off

--auto <int>
Can be 0, 1, or 2. This sets how often you must click Proceed to continue execution after viewing the graphics.
The higher the number, the more infrequently the program will pause.

Default: 1

--save_graphics {on | off}
If set to on, this option will save an image of the final placement and the final routing created by vpr to pdf files
on disk, with no need for any user interaction. The files are named vpr_placement.pdf and vpr_routing.pdf.

Default: off

--graphics_commands <string>
A set of semi-colon seperated graphics commands.

• save_graphics <file> Saves graphics to the specified file (.png/.pdf/ .svg). If <file> contains {i}, it will
be replaced with an integer which increments each time graphics is invoked.

• set_macros <int> Sets the placement macro drawing state
• set_nets <int> Sets the net drawing state
• set_cpd <int> Sets the criticla path delay drawing state
• set_routing_util <int> Sets the routing utilization drawing state
• set_clip_routing_util <int> Sets whether routing utilization values are clipped to [0., 1.]. Useful when

a consistent scale is needed across images
• set_draw_block_outlines <int> Sets whether blocks have an outline drawn around them
• set_draw_block_text <int> Sets whether blocks have label text drawn on them
• set_draw_block_internals <int> Sets the level to which block internals are drawn
• set_draw_net_max_fanout <int> Sets the maximum fanout for nets to be drawn (if fanout is beyond

this value the net will not be drawn)
• set_congestion <int> Sets the routing congestion drawing state
• exit <int> Exits VPR with specified exit code

Example:

save_graphics place.png; \
set_nets 1; save_graphics nets1.png;\
set_nets 2; save_graphics nets2.png; set_nets 0;\
set_cpd 1; save_graphics cpd1.png; \
set_cpd 3; save_graphics cpd3.png; set_cpd 0; \
set_routing_util 5; save_graphics routing_util5.png; \
set_routing_util 0; \
set_congestion 1; save_graphics congestion1.png;

The above toggles various graphics settings (e.g. drawing nets, drawing critical path) and then saves the results
to .png files.

Note that drawing state is reset to its previous state after these commands are invoked.

Like the interactive graphics :option`<–disp>` option, the --auto option controls how often the commands
specified with this option are invoked.
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General Options

-h, --help
Display help message then exit.

--version
Display version information then exit.

--device <string>
Specifies which device layout/floorplan to use from the architecture file.

auto uses the smallest device satisfying the circuit’s resource requirements. Other values are assumed to be
the names of device layouts defined in the FPGA Grid Layout section of the architecture file.

Note: If the architecture contains both <auto_layout> and <fixed_layout> specifications, specifying
an auto device will use the <auto_layout>.

Default: auto

-j, --num_workers <int>
Controls how many parallel workers VPR may use:

• 1 implies VPR will execute serially,
• >1 implies VPR may execute in parallel with up to the specified concurency
• 0 implies VPR may execute with up to the maximum concurrency supported by the host machine

If this option is not specified it may be set from the VPR_NUM_WORKERS environment variable; otherwise the
default is used.

Note: To compile VPR to allow the usage of parallel workers, libtbb-dev must be installed in the system.

Default: 1

--timing_analysis {on | off}
Turn VPR timing analysis off. If it is off, you don’t have to specify the various timing analysis parameters in the
architecture file.

Default: on

--echo_file {on | off}
Generates echo files of key internal data structures. These files are generally used for debugging vpr, and
typically end in .echo

Default: off

--verify_file_digests {on | off}
Checks that any intermediate files loaded (e.g. previous packing/placement/routing) are consistent with the
current netlist/architecture.

If set to on will error if any files in the upstream dependancy have been modified. If set to off will warn if any
files in the upstream dependancy have been modified.

Default: on

--target_utilization <float>
Sets the target device utilization. This corresponds to the maximum target fraction of device grid-tiles to be
used. A value of 1.0 means the smallest device (which fits the circuit) will be used.

Default: 1.0

136 Chapter 5. VPR



Verilog-to-Routing Documentation, Release 8.1.0-dev

--constant_net_method {global | route}
Specifies how constant nets (i.e. those driven to a constant value) are handled:

• global: Treat constant nets as globals (not routed)

• route: Treat constant nets as normal nets (routed)

Default: global

--clock_modeling {ideal | route | dedicated_network}
Specifies how clock nets are handled:

• ideal: Treat clock pins as ideal (i.e. no routing delays on clocks)

• route: Treat clock nets as normal nets (i.e. routed using inter-block routing)

• dedicated_network: Use the architectures dedicated clock network (experimental)

Default: ideal

--two_stage_clock_routing {on | off}
Routes clock nets in two stages using a dedicated clock network.

• First stage: From the net source (e.g. an I/O pin) to a dedicated clock network root (e.g. center of chip)
• Second stage: From the clock network root to net sinks.

Note this option only works when specifying a clock architecture, see Clock Architecture Format; it does not
work when reading a routing resource graph (i.e. --read_rr_graph).

Default: off

--exit_before_pack {on | off}
Causes VPR to exit before packing starts (useful for statistics collection).

Default: off

--strict_checks {on, off}
Controls whether VPR enforces some consistency checks strictly (as errors) or treats them as warnings.

Usually these checks indicate an issue with either the targetted architecture, or consistency issues with VPR’s
internal data structures/algorithms (possibly harming optimization quality). In specific circumstances on specific
architectures these checks may be too restrictive and can be turned off.

Warning: Exercise extreme caution when turning this option off – be sure you completely understand why
the issue is being flagged, and why it is OK to treat as a warning instead of an error.

Default: on

Filename Options

VPR by default appends .blif, .net, .place, and .route to the circuit name provided by the user, and looks for an SDC
file in the working directory with the same name as the circuit. Use the options below to override this default naming
behaviour.

--circuit_file <file>
Path to technology mapped user circuit in BLIF format.

Note: If specified the circuit positional argument is treated as the circuit name.

See also:

--circuit_format
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--circuit_format {auto | blif | eblif}
File format of the input technology mapped user circuit.

• auto: File format inferred from file extension (e.g. .blif or .eblif)
• blif: Strict structural BLIF
• eblif: Structural BLIF with extensions

Default: auto

--net_file <file>
Path to packed user circuit in net format.

Default: circuit.net

--place_file <file>
Path to final placement file.

Default: circuit.place

--route_file <file>
Path to final routing file.

Default: circuit.route

--sdc_file <file>
Path to SDC timing constraints file.

If no SDC file is found default timing constraints will be used.

Default: circuit.sdc

--write_rr_graph <file>
Writes out the routing resource graph generated at the last stage of VPR into RR Graph XML format

<file> describes the filename for the generated routing resource graph. The output can be read into VPR using
--read_rr_graph

--read_rr_graph <file>
Reads in the routing resource graph named <file> loads it for use during the placement and routing stages.

The routing resource graph overthrows all the architecture definitions regarding switches, nodes, and edges.
Other information such as grid information, block types, and segment information are matched with the archi-
tecture file to ensure accuracy.

This file should be in XML format and can be easily obtained through --write_rr_graph

See also:

Routing Resource XML File.

--outfile_prefix <string>
Prefix for output files

Netlist Options

By default VPR will remove buffer LUTs, and iteratively sweep the netlist to remove unused primary inputs/outputs,
nets and blocks, until nothing else can be removed.

--absorb_buffer_luts {on | off}
Controls whether LUTs programmed as wires (i.e. implementing logical identity) should be absorbed into the
downstream logic.

Usually buffer LUTS are introduced in BLIF circuits by upstream tools in order to rename signals (like assign
statements in Verilog). Absorbing these buffers reduces the number of LUTs required to implement the circuit.
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Ocassionally buffer LUTs are inserted for other purposes, and this option can be used to preserve them. Dis-
abling buffer absorption can also improve the matching between the input and post-synthesis netlist/SDF.

Default: on

--const_gen_inference {none | comb | comb_seq}
Controls how constant generators are inferred/detected in the input circuit. Constant generators and the signals
they drive are not considered during timing analysis.

• none: No constant generator inference will occur. Any signals which are actually constants will be
treated as non-constants.

• comb: VPR will infer constant generators from combinational blocks with no non-constant inputs (always
safe).

• comb_seq: VPR will infer constant generators from combinational and sequential blocks with only
constant inputs (usually safe).

Note: In rare circumstances comb_seq could incorrectly identify certain blocks as constant generators. This
would only occur if a sequential netlist primitive has an internal state which evolves completely independently
of any data input (e.g. a hardened LFSR block, embedded thermal sensor).

Default: comb_seq

--sweep_dangling_primary_ios {on | off}
Controls whether the circuits dangling primary inputs and outputs (i.e. those who do not drive, or are not driven
by anything) are swept and removed from the netlist.

Disabling sweeping of primary inputs/outputs can improve the matching between the input and post-synthesis
netlists. This is often useful when performing formal verification.

See also:

--sweep_constant_primary_outputs

Default: on

--sweep_dangling_nets {on | off}
Controls whether dangling nets (i.e. those who do not drive, or are not driven by anything) are swept and
removed from the netlist.

Default: on

--sweep_dangling_blocks {on | off}
Controls whether dangling blocks (i.e. those who do not drive anything) are swept and removed from the netlist.

Default: on

--sweep_constant_primary_outputs {on | off}
Controls whether primary outputs driven by constant values are swept and removed from the netlist.

See also:

--sweep_dangling_primary_ios

Default: off

--netlist_verbosity <int>
Controls the verbosity of netlist processing (constant generator detection, swept netlist components). High
values produce more detailed output.

Default: 1
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Packing Options

AAPack is the packing algorithm built into VPR. AAPack takes as input a technology-mapped blif netlist consisting
of LUTs, flip-flops, memories, mulitpliers, etc and outputs a .net formatted netlist composed of more complex logic
blocks. The logic blocks available on the FPGA are specified through the FPGA architecture file. For people not
working on CAD, you can probably leave all the options to their default values.

--connection_driven_clustering {on | off}
Controls whether or not AAPack prioritizes the absorption of nets with fewer connections into a complex logic
block over nets with more connections.

Default: on

--allow_unrelated_clustering {on | off | auto}
Controls whether primitives with no attraction to a cluster may be packed into it.

Unrelated clustering can increase packing density (decreasing the number of blocks required to implement the
circuit), but can significantly impact routability.

When set to auto VPR automatically decides whether to enable unrelated clustring based on the targetted
device and achieved packing density.

Default: auto

--alpha_clustering <float>
A parameter that weights the optimization of timing vs area.

A value of 0 focuses solely on area, a value of 1 focuses entirely on timing.

Default: 0.75

--beta_clustering <float>
A tradeoff parameter that controls the optimization of smaller net absorption vs. the optimization of signal
sharing.

A value of 0 focuses solely on signal sharing, while a value of 1 focuses solely on absorbing smaller nets into a
cluster. This option is meaningful only when connection_driven_clustering is on.

Default: 0.9

--timing_driven_clustering {on|off}
Controls whether or not to do timing driven clustering

Default: on

--cluster_seed_type {blend | timing | max_inputs}
Controls how the packer chooses the first primitive to place in a new cluster.

timing means that the unclustered primitive with the most timing-critical connection is used as the seed.

max_inputs means the unclustered primitive that has the most connected inputs is used as the seed.

blend uses a weighted sum of timing criticality, the number of tightly coupled blocks connected to the primi-
tive, and the number of its external inputs.

max_pins selects primitives with the most number of pins (which may be used, or unused).

max_input_pins selects primitives with the most number of input pins (which may be used, or unused).

blend2 An alternative blend formulation taking into account both used and unused pin counts, number of
tightly coupled blocks and criticality.

Default: blend2 if timing_driven_clustering is on; max_inputs otherwise.
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--clustering_pin_feasibility_filter {on | off}
Controls whether the pin counting feasibility filter is used during clustering. When enabled the clustering engine
counts the number of available pins in groups/classes of mutually connected pins within a cluster. These counts
are used to quickly filter out candidate primitives/atoms/molecules for which the cluster has insufficient pins to
route (without performing a full routing). This reduces packing run-time.

Default: on

--balance_block_type_utilization {on, off, auto}
Controls how the packer selects the block type to which a primitive will be mapped if it can potentially map to
multiple block types.

• on : Try to balance block type utilization by picking the block type with the (currenty) lowest utilization.
• off : Do not try to balance block type utilization
• auto: Dynamically enabled/disabled (based on density)

Default: auto

--target_ext_pin_util { auto | <float> | <float>,<float> | <string>:<float> | <string>:<float>,<float> }
Sets the external pin utilization target (fraction between 0.0 and 1.0) during clustering. This determines how
many pin the clustering engine will aim to use in a given cluster before closing it and opening a new cluster.

Setting this to 1.0 guides the packer to pack as densely as possible (i.e. it will keep adding molecules to the
cluster until no more can fit). Setting this to a lower value will guide the packer to pack less densely, and instead
creating more clusters. In the limit setting this to 0.0 will cause the packer to create a new cluster for each
molecule.

Typically packing less densely improves routability, at the cost of using more clusters.

This option can take several different types of values:
• auto VPR will automatically determine appropriate target utilizations.
• <float> specifies the target input pin utilization for all block types.

For example:

– 0.7 specifies that all blocks should aim for 70% input pin utilization.
• <float>,<float> specifies the target input and output pin utilizations respectively for all block types.

For example:

– 0.7,0.9 specifies that all blocks should aim for 70% input pin utilization, and 90%
output pin utilization.

• <string>:<float> and <string>:<float>,<float> specify the target pin utilizations for a
specific block type (as above).

For example:

– clb:0.7 specifies that only clb type blocks should aim for 70% input pin utilization.

– clb:0.7,0.9 specifies that only clb type blocks should aim for 70% input pin uti-
lization, and 90% output pin utilization.

Note: If a pin utilization target is unspecified it defaults to 1.0 (i.e. 100% utilization).

For example:
• 0.7 leaves the output pin utilization unspecified, which is equivalent to 0.7,1.0.
• clb:0.7,0.9 leaves the pin utilizations for all other block types unspecified, so they will assume a

default utilization of 1.0,1.0.

This option can also take multiple space-separated values. For example:

5.2. Command-line Options 141



Verilog-to-Routing Documentation, Release 8.1.0-dev

--target_ext_pin_util clb:0.5 dsp:0.9,0.7 0.8

would specify that clb blocks use a target input pin utilization of 50%, dsp blocks use a targets of 90% and
70% for inputs and outputs respectively, and all other blocks use an input pin utilization target of 80%.

Note: This option is only a guideline. If a molecule (e.g. a carry-chain with many inputs) would not otherwise
fit into a cluster type at the specified target utilization the packer will fallback to using all pins (i.e. a target
utilization of 1.0).

Note: This option requires --clustering_pin_feasibility_filter to be enabled.

Default: auto

--pack_prioritize_transitive_connectivity {on | off}
Controls whether transitive connectivity is prioritized over high-fanout connectivity during packing.

Default: on

--pack_high_fanout_threshold {auto | <int> | <string>:<int>}
Defines the threshold for high fanout nets within the packer.

This option can take several different types of values:
• auto VPR will automatically determine appropriate thresholds.
• <int> specifies the fanout threshold for all block types.

For example:

– 64 specifies that a threshold of 64 should be used for all blocks.
• <string>:<float> specifies the the threshold for a specific block type.

For example:

– clb:16 specifies that clb type blocks should use a threshold of 16.
This option can also take multiple space-separated values. For example:

--pack_high_fanout_threshold 128 clb:16

would specify that clb blocks use a threshold of 16, while all other blocks (e.g. DSPs/RAMs) would use a
threshold of 128.

Default: auto

--pack_transitive_fanout_threshold <int>
Packer transitive fanout threshold.

Default: 4

--pack_feasible_block_array_size <int>
This value is used to determine the max size of the priority queue for candidates that pass the early filter legality
test but not the more detailed routing filter.

Default: 30

--pack_verbosity <int>
Controls the verbosity of clustering output. Larger values produce more detailed output, which may be useful
for debugging architecture packing problems.

Default: 2
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Placer Options

The placement engine in VPR places logic blocks using simulated annealing. By default, the automatic annealing
schedule is used [BRM99][BR97b]. This schedule gathers statistics as the placement progresses, and uses them to
determine how to update the temperature, when to exit, etc. This schedule is generally superior to any user-specified
schedule. If any of init_t, exit_t or alpha_t is specified, the user schedule, with a fixed initial temperature, final
temperature and temperature update factor is used.

See also:

Timing-Driven Placer Options

--seed <int>
Sets the initial random seed used by the placer.

Default: 1

--enable_timing_computations {on | off}
Controls whether or not the placement algorithm prints estimates of the circuit speed of the placement it gener-
ates. This setting affects statistics output only, not optimization behaviour.

Default: on if timing-driven placement is specified, off otherwise.

--inner_num <float>
The number of moves attempted at each temperature is inner_num * num_blocks^(4/3) in the circuit. The
number of blocks in a circuit is the number of pads plus the number of clbs. Changing inner_num is the best
way to change the speed/quality tradeoff of the placer, as it leaves the highly-efficient automatic annealing
schedule on and simply changes the number of moves per temperature.

Specifying -inner_num 10will slow the placer by a factor of 10 while typically improving placement quality
only by 10% or less (depends on the architecture). Hence users more concerned with quality than CPU time
may find this a more appropriate value of inner_num.

Default: 1.0

--init_t <float>
The starting temperature of the anneal for the manual annealing schedule.

Default: 100.0

--exit_t <float>
The manual anneal will terminate when the temperature drops below the exit temperature.

Default: 0.01

--alpha_t <float>
The temperature is updated by multiplying the old temperature by alpha_t when the manual annealing schedule
is enabled.

Default: 0.8

--fix_pins {free | random | <file.pads>}
Controls how the placer handles I/O pads during placement.

• free: The placer can move I/O locations to optimize the placement.
• random: Fixes I/O pads to arbitrary locations and does not allow the placer to move them during the

anneal (models the effect of poor board-level I/O constraints).
• <file.pads>: A path to a file listing the desired location of each I/O block in the netlist.

This pad location file is in the same format as a normal placement file, but only specifies the locations of I/O
pads, rather than the locations of all blocks.

Default: free.
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--place_algorithm {bounding_box | path_timing_driven}
Controls the algorithm used by the placer.

bounding_box focuses purely on minimizing the bounding box wirelength of the circuit.

path_timing_driven focuses on minimizing both wirelength and the critical path delay.

Default: path_timing_driven

--place_chan_width <int>
Tells VPR how many tracks a channel of relative width 1 is expected to need to complete routing of this circuit.
VPR will then place the circuit only once, and repeatedly try routing the circuit as usual.

Default: 100

--place_rlim_escape <float>
The fraction of moves which are allowed to ignore the region limit. For example, a value of 0.1 means 10% of
moves are allowed to ignore the region limit.

Default: 0.0

Timing-Driven Placer Options

The following options are only valid when the placement engine is in timing-driven mode (timing-driven placement is
used by default).

--timing_tradeoff <float>
Controls the trade-off between bounding box minimization and delay minimization in the placer.

A value of 0 makes the placer focus completely on bounding box (wirelength) minimization, while a value of 1
makes the placer focus completely on timing optimization.

Default: 0.5

--recompute_crit_iter <int>
Controls how many temperature updates occur before the placer performs a timing analysis to update its estimate
of the criticality of each connection.

Default: 1

--inner_loop_recompute_divider <int>
Controls how many times the placer performs a timing analysis to update its criticality estimates while at a
single temperature.

Default: 0

--td_place_exp_first <float>
Controls how critical a connection is considered as a function of its slack, at the start of the anneal.

If this value is 0, all connections are considered equally critical. If this value is large, connections with small
slacks are considered much more critical than connections with small slacks. As the anneal progresses, the
exponent used in the criticality computation gradually changes from its starting value of td_place_exp_first to
its final value of --td_place_exp_last.

Default: 1.0

--td_place_exp_last <float>
Controls how critical a connection is considered as a function of its slack, at the end of the anneal.

See also:

--td_place_exp_first

Default: 8.0
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--place_delay_model {delta, delta_override}
Controls how the timing-driven placer estimates delays.

• delta The router is used to profile delay from various locations in the grid for various differences in
position

• delta_override Like delta but also includes special overrides to ensure effects of direct connects
between blocks are accounted for. This is potentially more accurate but is more complex and depending
on the architecture (e.g. number of direct connects) may increase place run-time.

Default: delta

--place_delay_model_reducer {min, max, median, arithmean, geomean}
When calculating delta delays for the placment delay model how are multiple values combined?

Default: min

--place_delay_offset <float>
A constant offset (in seconds) applied to the placer’s delay model.

Default: 0.0

--place_delay_ramp_delta_threshold <float>
The delta distance beyond which –place_delay_ramp is applied. Negative values disable the placer delay ramp.

Default: -1

--place_delay_ramp_slope <float>
The slope of the ramp (in seconds per grid tile) which is applied to the placer delay model for delta distance
beyond --place_delay_ramp_delta_threshold.

Default: 0.0e-9

--place_tsu_rel_margin <float>
Specifies the scaling factor for cell setup times used by the placer. This effectively controls whether the placer
should try to achieve extra margin on setup paths. For example a value of 1.1 corresponds to requesting 10%%
setup margin.

Default: 1.0

--place_tsu_abs_margin <float>
Specifies an absolute offest added to cell setup times used by the placer. This effectively controls whether
the placer should try to achieve extra margin on setup paths. For example a value of 500e-12 corresponds to
requesting an extra 500ps of setup margin.

Default: 0.0

--post_place_timing_report <file>
Name of the post-placement timing report file to generate (not generated if unspecfied).

Router Options

VPR uses a negotiated congestion algorithm (based on Pathfinder) to perform routing.

Note: By default the router performs a binary search to find the minimum routable channel width. To route at a fixed
channel width use --route_chan_width.

See also:

Timing-Driven Router Options

5.2. Command-line Options 145



Verilog-to-Routing Documentation, Release 8.1.0-dev

--max_router_iterations <int>
The number of iterations of a Pathfinder-based router that will be executed before a circuit is declared unroute-
able (if it hasn’t routed successfully yet) at a given channel width.

Speed-quality trade-off: reducing this number can speed up the binary search for minimum channel width, but
at the cost of some increase in final track count. This is most effective if -initial_pres_fac is simultaneously
increased. Increase this number to make the router try harder to route heavily congested designs.

Default: 50

--first_iter_pres_fac <float>
Similar to --initial_pres_fac. This sets the present overuse penalty factor for the very first routing
iteration. --initial_pres_fac sets it for the second iteration.

Note: A value of 0.0 causes congestion to be ignored on the first routing iteration.

Default: 0.0

--initial_pres_fac <float>
Sets the starting value of the present overuse penalty factor.

Speed-quality trade-off: increasing this number speeds up the router, at the cost of some increase in final track
count. Values of 1000 or so are perfectly reasonable.

Default: 0.5

--pres_fac_mult <float>
Sets the growth factor by which the present overuse penalty factor is multiplied after each router iteration.

Default: 1.3

--acc_fac <float>
Specifies the accumulated overuse factor (historical congestion cost factor).

Default: 1

--bb_factor <int>
Sets the distance (in channels) outside of the bounding box of its pins a route can go. Larger numbers slow the
router somewhat, but allow for a more exhaustive search of possible routes.

Default: 3

--base_cost_type {demand_only | delay_normalized | delay_normalized_length | delay_normalized_frequency | delay_normalized_length_frequency}
Sets the basic cost of using a routing node (resource).

• demand_only sets the basic cost of a node according to how much demand is expected for that type of
node.

• delay_normalized is similar to demand_only, but normalizes all these basic costs to be of the
same magnitude as the typical delay through a routing resource.

• delay_normalized_length like delay_normalized, but scaled by routing resource length.
• delay_normalized_frequency like delay_normalized, but scaled inversely by routing re-

source frequency.
• delay_normalized_length_frequency like delay_normalized, but scaled by routing re-

source length and scaled inversely by routing resource frequency.
Default: delay_normalized_length for the timing-driven router and demand_only for the breadth-
first router

--bend_cost <float>
The cost of a bend. Larger numbers will lead to routes with fewer bends, at the cost of some increase in track
count. If only global routing is being performed, routes with fewer bends will be easier for a detailed router to
subsequently route onto a segmented routing architecture.
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Default: 1 if global routing is being performed, 0 if combined global/detailed routing is being performed.

--route_type {global | detailed}
Specifies whether global routing or combined global and detailed routing should be performed.

Default: detailed (i.e. combined global and detailed routing)

--route_chan_width <int>
Tells VPR to route the circuit at the specified channel width.

Note: If the channel width is >= 0, no binary search on channel capacity will be performed to find the minimum
number of tracks required for routing. VPR simply reports whether or not the circuit will route at this channel
width.

Default: -1 (perform binary search for minimum routable channel width)

--min_route_chan_width_hint <int>
Hint to the router what the minimum routable channel width is.

The value provided is used to initialize the binary search for minimum channel width. A good hint may speed-up
the binary search by avoiding time spent at congested channel widths which are not routable.

The algorithm is robust to incorrect hints (i.e. it continues to binary search), so the hint does not need to be
precise.

This option may ocassionally produce a different minimum channel width due to the different initialization.

See also:

--verify_binary_search

--verify_binary_search {on | off}
Force the router to check that the channel width determined by binary search is the minimum.

The binary search ocassionally may not find the minimum channel width (e.g. due to router sub-optimality, or
routing pattern issues at a particular channel width).

This option attempts to verify the minimum by routing at successively lower channel widths until two consecu-
tive routing failures are observed.

--router_algorithm {breadth_first | timing_driven}
Selects which router algorithm to use.

Warning: The breadth_first router should NOT be used to compare the run-time/quality of
alternate routing algorithms.

It is inferrior to the timing_driven router from a circuit speed (2x - 10x slower) and run-time perspective
(takes 10-100x longer on the large benchmarks). The breadth_first router is deprecated and may be
removed in a future release.

The breadth_first router [BRM99] focuses solely on routing a design successfully, while the
timing_driven router [BRM99][MZB20] focuses both on achieving a successful route and achieving good
circuit speed.

The breadth-first router is capable of routing a design using slightly fewer tracks than the timing-driving router
(typically 5% if the timing-driven router uses its default parameters. This can be reduced to about 2% if the
router parameters are set so the timing-driven router pays more attention to routability and less to area). The
designs produced by the timing-driven router are much faster, however, (2x - 10x) and it uses less CPU time to
route.
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Default: timing_driven

--min_incremental_reroute_fanout <int>
Incrementally re-route nets with fanout above the specified threshold.

This attempts to re-use the legal (i.e. non-congested) parts of the routing tree for high fanout nets, with the aim
of reducing router execution time.

To disable, set value to a value higher than the largest fanout of any net.

Default: 16

Timing-Driven Router Options

The following options are only valid when the router is in timing-driven mode (the default).

--astar_fac <float>
Sets how aggressive the directed search used by the timing-driven router is.

Values between 1 and 2 are reasonable, with higher values trading some quality for reduced CPU time.

Default: 1.2

--max_criticality <float>
Sets the maximum fraction of routing cost that can come from delay (vs. coming from routability) for any net.

A value of 0 means no attention is paid to delay; a value of 1 means nets on the critical path pay no attention to
congestion.

Default: 0.99

--criticality_exp <float>
Controls the delay - routability tradeoff for nets as a function of their slack.

If this value is 0, all nets are treated the same, regardless of their slack. If it is very large, only nets on the critical
path will be routed with attention paid to delay. Other values produce more moderate tradeoffs.

Default: 1.0

--router_init_wirelength_abort_threshold <float>
The first routing iteration wirelength abort threshold. If the first routing iteration uses more than this fraction of
available wirelength routing is aborted.

Default: 0.85

--incremental_reroute_delay_ripup {on | off | auto}
Controls whether incremental net routing will rip-up (and re-route) a critical connection for delay, even if the
routing is legal. auto enables delay-based rip-up unless routability becomes a concern.

Default: auto

--routing_failure_predictor {safe | aggressive | off}
Controls how aggressive the router is at predicting when it will not be able to route successfully, and giving up
early. Using this option can significantly reduce the runtime of a binary search for the minimum channel width.

safe only declares failure when it is extremely unlikely a routing will succeed, given the amount of congestion
existing in the design.

aggressive can further reduce the CPU time for a binary search for the minimum channel width but can
increase the minimum channel width by giving up on some routings that would succeed.

off disables this feature, which can be useful if you suspect the predictor is declaring routing failure too quickly
on your architecture.
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See also:

--verify_binary_search

Default: safe

--routing_budgets_algorithm { disable | minimax | scale_delay }

Warning: Experimental

Controls how the routing budgets are created. Routing budgets are used to guid VPR’s routing algorithm to
consider both short path and long path timing constraints [FBC08].

disable is used to disable the budget feature. This uses the default VPR and ignores hold time constraints.

minimax sets the minimum and maximum budgets by distributing the long path and short path slacks de-
pending on the the current delay values. This uses the routing cost valleys and Minimax-PERT algorithm
[YLS92][FBC08].

scale_delay has the minimum budgets set to 0 and the maximum budgets is set to the delay of a net scaled
by the pin criticality (net delay/pin criticality).

Default: disable

--save_routing_per_iteration {on | off}
Controls whether VPR saves the current routing to a file after each routing iteration. May be helpful for debug-
ging.

Default: off

--congested_routing_iteration_threshold CONGESTED_ROUTING_ITERATION_THRESHOLD
Controls when the router enters a high effort mode to resolve lingering routing congestion. Value is the fraction
of max_router_iterations beyond which the routing is deemed congested.

Default: 1.0 (never)

--route_bb_update {static, dynamic}
Controls how the router’s net bounding boxes are updated:

• static : bounding boxes are never updated

• dynamic: bounding boxes are updated dynamically as routing progresses (may improve
routability of congested designs)

Default: dynamic

--router_high_fanout_threshold ROUTER_HIGH_FANOUT_THRESHOLD
Specifies the net fanout beyond which a net is considered high fanout. Values less than zero disable special
behaviour for high fanout nets.

Default: 64

--router_lookahead {classic, map}
Controls what lookahead the router uses to calculate cost of completing a connection.

• classic: The classic VPR lookahead

• map: A more advanced lookahead which accounts for diverse wire types and their connec-
tivity

Default: classic
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--router_max_convergence_count <float>
Controls how many times the router is allowed to converge to a legal routing before halting. If multiple legal
solutions are found the best quality implementation is used.

Default: 1

--router_reconvergence_cpd_threshold <float>
Specifies the minimum potential CPD improvement for which the router will continue to attempt re-convergent
routing.

For example, a value of 0.99 means the router will not give up on reconvergent routing if it thinks a > 1% CPD
reduction is possible.

Default: 0.99

--router_initial_timing {all_critical | lookahead}
Controls how criticality is determined at the start of the first routing iteration.

• all_critical: All connections are considered timing critical.

• lookahead: Connection criticalities are determined from timing analysis assuming (best-
case) connection delays as estimated by the router’s lookahead.

Default: all_critical for the classic --router_lookahead, otherwise lookahead

--router_update_lower_bound_delays {on | off}
Controls whether the router updates lower bound connection delays after the 1st routing iteration.

Default: on

--router_first_iter_timing_report <file>
Name of the timing report file to generate after the first routing iteration completes (not generated if unspecfied).

--router_debug_net <int>

Note: This option is likely only of interest to developers debugging the routing algorithm

Controls which net the router produces detailed debug information for.
• For values >= 0, the value is the net ID for which detailed router debug information should be produced.
• For value == -1, detailed router debug information is produced for all nets.
• For values < -1, no router debug output is produced.

Warning: VPR must have been compiled with VTR_ENABLE_DEBUG_LOGGING on to get any debug
output from this option.

Default: -2

--router_debug_sink_rr ROUTER_DEBUG_SINK_RR

Note: This option is likely only of interest to developers debugging the routing algorithm

Controls when router debugging is enabled for the specified sink RR.
• For values >= 0, the value is taken as the sink RR Node ID for which to enable router debug output.
• For values < 0, sink-based router debug output is disabled.
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Warning: VPR must have been compiled with VTR_ENABLE_DEBUG_LOGGING on to get any debug
output from this option.

Default: -2

Analysis Options

--full_stats
Print out some extra statistics about the circuit and its routing useful for wireability analysis.

Default: off

--gen_post_synthesis_netlist { on | off }
Generates the Verilog and SDF files for the post-synthesized circuit. The Verilog file can be used to perform
functional simulation and the SDF file enables timing simulation of the post-synthesized circuit.

The Verilog file contains instantiated modules of the primitives in the circuit. Currently VPR can generate Ver-
ilog files for circuits that only contain LUTs, Flip Flops, IOs, Multipliers, and BRAMs. The Verilog description
of these primitives are in the primitives.v file. To simulate the post-synthesized circuit, one must include the
generated Verilog file and also the primitives.v Verilog file, in the simulation directory.

See also:

Post-Implementation Timing Simulation

If one wants to generate the post-synthesized Verilog file of a circuit that contains a primitive other than those
mentioned above, he/she should contact the VTR team to have the source code updated. Furthermore to perform
simulation on that circuit the Verilog description of that new primitive must be appended to the primitives.v file
as a separate module.

Default: off

--timing_report_npaths <int>
Controls how many timing paths are reported.

Note: The number of paths reported may be less than the specified value, if the circuit has fewer paths.

Default: 100

--timing_report_detail { netlist | aggregated | detailed }
Controls the level of detail included in generated timing reports.

We obtained the following results using the k6_frac_N10_frac_chain_mem32K_40nm.xml architecture and
multiclock.blif circuit.

• netlist: Timing reports show only netlist primitive pins.

For example:

#Path 2
Startpoint: FFC.Q[0] (.latch clocked by clk)
Endpoint : out:out1.outpad[0] (.output clocked by virtual_io_clock)
Path Type : setup

Point
→˓Incr Path
--------------------------------------------------------------------
→˓------------

(continues on next page)
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(continued from previous page)

clock clk (rise edge) 0.
→˓000 0.000
clock source latency 0.
→˓000 0.000
clk.inpad[0] (.input) 0.
→˓000 0.000
FFC.clk[0] (.latch) 0.
→˓042 0.042
FFC.Q[0] (.latch) [clock-to-output] 0.
→˓124 0.166
out:out1.outpad[0] (.output) 0.
→˓550 0.717
data arrival time
→˓ 0.717

clock virtual_io_clock (rise edge) 0.
→˓000 0.000
clock source latency 0.
→˓000 0.000
clock uncertainty 0.
→˓000 0.000
output external delay 0.
→˓000 0.000
data required time
→˓ 0.000
--------------------------------------------------------------------
→˓------------
data required time
→˓ 0.000
data arrival time
→˓ -0.717
--------------------------------------------------------------------
→˓------------
slack (VIOLATED)
→˓ -0.717

• aggregated: Timing reports show netlist pins, and an aggregated summary of intra-block and inter-
block routing delays.

For example:

#Path 2
Startpoint: FFC.Q[0] (.latch at (3,3) clocked by clk)
Endpoint : out:out1.outpad[0] (.output at (3,4) clocked by virtual_
→˓io_clock)
Path Type : setup

Point
→˓Incr Path
--------------------------------------------------------------------
→˓------------
clock clk (rise edge) 0.
→˓000 0.000
clock source latency 0.
→˓000 0.000
clk.inpad[0] (.input at (4,2)) 0.
→˓000 0.000

(continues on next page)
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| (intra 'io' routing) 0.
→˓042 0.042
| (inter-block routing) 0.
→˓000 0.042
| (intra 'clb' routing) 0.
→˓000 0.042
FFC.clk[0] (.latch at (3,3)) 0.
→˓000 0.042
| (primitive '.latch' Tcq_max) 0.
→˓124 0.166
FFC.Q[0] (.latch at (3,3)) [clock-to-output] 0.
→˓000 0.166
| (intra 'clb' routing) 0.
→˓045 0.211
| (inter-block routing) 0.
→˓491 0.703
| (intra 'io' routing) 0.
→˓014 0.717
out:out1.outpad[0] (.output at (3,4)) 0.
→˓000 0.717
data arrival time
→˓ 0.717

clock virtual_io_clock (rise edge) 0.
→˓000 0.000
clock source latency 0.
→˓000 0.000
clock uncertainty 0.
→˓000 0.000
output external delay 0.
→˓000 0.000
data required time
→˓ 0.000
--------------------------------------------------------------------
→˓------------
data required time
→˓ 0.000
data arrival time
→˓ -0.717
--------------------------------------------------------------------
→˓------------
slack (VIOLATED)
→˓ -0.717

where each line prefixed with | (pipe character) represent a sub-delay of an edge within the
timing graph.

For instance:

FFC.Q[0] (.latch at (3,3)) [clock-to-output] 0.
→˓000 0.166
| (intra 'clb' routing) 0.
→˓045 0.211
| (inter-block routing) 0.
→˓491 0.703
| (intra 'io' routing) 0.
→˓014 0.717

(continues on next page)
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out:out1.outpad[0] (.output at (3,4)) 0.
→˓000 0.717

indicates that between the netlist pins FFC.Q[0] and out:out1.outpad[0] there are
delays of:

– 45 ps from the .latch output pin to an output pin of a clb block,

– 491 ps through the general inter-block routing fabric, and

– 14 ps from the input pin of a io block to .output.

Also note that a connection between two pins can be contained within the same clb block,
and does not use the general inter-block routing network. As an example from a completely
different circuit-architecture pair:

n1168.out[0] (.names) 0.
→˓000 0.902
| (intra 'clb' routing) 0.
→˓000 0.902
top^finish_FF_NODE.D[0] (.latch) 0.
→˓000 0.902

• detailed: Like aggregated, the timing reports show netlist pins, and an aggregated summary of
intra-block. In addition, it includes a detailed breakdown of the inter-block routing delays.

It is important to note that detailed timing report can only list the components of a non-global net, oth-
erwise, it reports inter-block routing as well as an incremental delay of 0, just as in the aggregated and
netlist reports.

For example:

#Path 2
Startpoint: FFC.Q[0] (.latch at (3,3) clocked by clk)
Endpoint : out:out1.outpad[0] (.output at (3,4) clocked by virtual_
→˓io_clock)
Path Type : setup

Point
→˓Incr Path
--------------------------------------------------------------------
→˓------------
clock clk (rise edge) 0.
→˓000 0.000
clock source latency 0.
→˓000 0.000
clk.inpad[0] (.input at (4,2)) 0.
→˓000 0.000
| (intra 'io' routing) 0.
→˓042 0.042
| (inter-block routing:global net) 0.
→˓000 0.042
| (intra 'clb' routing) 0.
→˓000 0.042
FFC.clk[0] (.latch at (3,3)) 0.
→˓000 0.042
| (primitive '.latch' Tcq_max) 0.
→˓124 0.166
FFC.Q[0] (.latch at (3,3)) [clock-to-output] 0.
→˓000 0.166 (continues on next page)
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| (intra 'clb' routing) 0.
→˓045 0.211
| (OPIN:1479 side:TOP (3,3)) 0.
→˓000 0.211
| (CHANX:2073 unnamed_segment_0 length:1 (3,3)->(2,3)) 0.
→˓095 0.306
| (CHANY:2139 unnamed_segment_0 length:0 (1,3)->(1,3)) 0.
→˓075 0.382
| (CHANX:2040 unnamed_segment_0 length:1 (2,2)->(3,2)) 0.
→˓095 0.476
| (CHANY:2166 unnamed_segment_0 length:0 (2,3)->(2,3)) 0.
→˓076 0.552
| (CHANX:2076 unnamed_segment_0 length:0 (3,3)->(3,3)) 0.
→˓078 0.630
| (IPIN:1532 side:BOTTOM (3,4)) 0.
→˓072 0.703
| (intra 'io' routing) 0.
→˓014 0.717
out:out1.outpad[0] (.output at (3,4)) 0.
→˓000 0.717
data arrival time
→˓ 0.717

clock virtual_io_clock (rise edge) 0.
→˓000 0.000
clock source latency 0.
→˓000 0.000
clock uncertainty 0.
→˓000 0.000
output external delay 0.
→˓000 0.000
data required time
→˓ 0.000
--------------------------------------------------------------------
→˓------------
data required time
→˓ 0.000
data arrival time
→˓ -0.717
--------------------------------------------------------------------
→˓------------
slack (VIOLATED)
→˓ -0.717

where each line prefixed with | (pipe character) represent a sub-delay of an edge within the
timing graph. In the detailed mode, the inter-block routing has now been replaced by the net
components.

For OPINS and IPINS, this is the format of the name: |
(ROUTING_RESOURCE_NODE_TYPE:ROUTING_RESOURCE_NODE_ID side:SIDE
(START_COORDINATES)->(END_COORDINATES))

For CHANX and CHANY, this is the format of the name: |
(ROUTING_RESOURCE_NODE_TYPE:ROUTING_RESOURCE_NODE_ID
SEGMENT_NAME length:LENGTH (START_COORDINATES)->(END_COORDINATES))

Here is an example of the breakdown:
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FFC.Q[0] (.latch at (3,3)) [clock-to-output] 0.
→˓000 0.166
| (intra 'clb' routing) 0.
→˓045 0.211
| (OPIN:1479 side:TOP (3,3)) 0.
→˓000 0.211
| (CHANX:2073 unnamed_segment_0 length:1 (3,3)->(2,3)) 0.
→˓095 0.306
| (CHANY:2139 unnamed_segment_0 length:0 (1,3)->(1,3)) 0.
→˓075 0.382
| (CHANX:2040 unnamed_segment_0 length:1 (2,2)->(3,2)) 0.
→˓095 0.476
| (CHANY:2166 unnamed_segment_0 length:0 (2,3)->(2,3)) 0.
→˓076 0.552
| (CHANX:2076 unnamed_segment_0 length:0 (3,3)->(3,3)) 0.
→˓078 0.630
| (IPIN:1532 side:BOTTOM (3,4)) 0.
→˓072 0.703
| (intra 'io' routing) 0.
→˓014 0.717
out:out1.outpad[0] (.output at (3,4)) 0.
→˓000 0.717

indicates that between the netlist pins FFC.Q[0] and out:out1.outpad[0] there are
delays of:

– 45 ps from the .latch output pin to an output pin of a clb block,

– 0 ps from the clb output pin to the CHANX:2073 wire,

– 95 ps from the CHANX:2073 to the CHANY:2139 wire,

– 75 ps from the CHANY:2139 to the CHANX:2040 wore,

– 95 ps from the CHANX:2040 to the CHANY:2166 wire,

– 76 ps from the CHANY:2166 to the CHANX:2076 wire,

– 78 ps from the CHANX:2076 to the input pin of a io block,

– 14 ps input pin of a io block to .output.

In the initial description we referred to the existence of global nets, which also occur in this
net:

clk.inpad[0] (.input at (4,2)) 0.
→˓000 0.000
| (intra 'io' routing) 0.
→˓042 0.042
| (inter-block routing:global net) 0.
→˓000 0.042
| (intra 'clb' routing) 0.
→˓000 0.042
FFC.clk[0] (.latch at (3,3)) 0.
→˓000 0.042

Global nets are unrouted nets, and their route trees happen to be null.

Finally, is interesting to note that the consecutive channel components may not seem to con-
nect. There are two types of occurences:
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1. The preceding channel’s ending coordinates extend past the following channel’s starting
coordinates (example from a different path):

| (chany:2113 unnamed_segment_0 length:2 (1, 3) -> (1, 1)) 0.
→˓116 0.405
| (chanx:2027 unnamed_segment_0 length:0 (1, 2) -> (1, 2)) 0.
→˓078 0.482

It is possible that by opening a switch between (1,2) to (1,1), CHANY:2113 actually only
extends from (1,3) to (1,2).

2. The preceding channel’s ending coordinates have no relation to the following channel’s
starting coordinates. There is no logical contradiction, but for clarification, it is best to
see an explanation of the VPR coordinate system. The path can also be visualized by
VPR graphics, as an illustration of this point:

Fig. 5.1 shows the routing resources used in Path #2 and their locations on the FPGA.

1. The signal emerges from near the top-right corner of the block to_FFC (OPIN:1479)
and joins the topmost horizontal segment of length 1 (CHANX:2073).

2. The signal proceeds to the left, then connects to the outermost, blue vertical segment of
length 0 (CHANY:2139).

3. The signal continues downward and attaches to the horizontal segment of length 1
(CHANX:2040).

4. Of the aforementioned horizontal segment, after travelling one linear unit to the right,
the signal jumps on a vertical segment of length 0 (CHANY:2166).

5. The signal travels upward and promptly connects to a horizontal segment of length 0
(CHANX:2076).

6. This segment connects to the green destination io (3,4).
• debug: Like detailed, but includes additional VPR internal debug information such as timing graph

node IDs (tnode) and routing SOURCE/SINK nodes.
Default: netlist

--echo_dot_timing_graph_node { string | int }
Controls what subset of the timing graph is echoed to a GraphViz DOT file when vpr --echo_file is
enabled.

Value can be a string (corresponding to a VPR atom netlist pin name), or an integer representing a timing graph
node ID. Negative values mean the entire timing graph is dumped to the DOT file.

Default: -1

--timing_report_skew { on | off }
Controls whether clock skew timing reports are generated.

Default: off
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Fig. 5.1: Illustration of Path #2 with insight into the coordinate system.
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Power Estimation Options

The following options are used to enable power estimation in VPR.

See also:

Power Estimation for more details.

--power
Enable power estimation

Default: off

--tech_properties <file>
XML File containing properties of the CMOS technology (transistor capacitances, leakage currents, etc). These
can be found at $VTR_ROOT/vtr_flow/tech/, or can be created for a user-provided SPICE technology
(see Power Estimation).

--activity_file <file>
File containing signal activites for all of the nets in the circuit. The file must be in the format:

<net name1> <signal probability> <transition density>
<net name2> <signal probability> <transition density>
...

Instructions on generating this file are provided in Power Estimation.

5.2.3 Command-line Auto Completion

To simplify using VPR on the command-line you can use the dev/vpr_bash_completion.sh script, which will
enable TAB completion for VPR commandline arguments (based on the output of vpr -h).

Simply add:

source $VTR_ROOT/dev/vpr_bash_completion.sh

to your .bashrc. $VTR_ROOT refers to the root of the VTR source tree on your system.

5.3 Graphics

VPR includes easy-to-use graphics for visualizing both the targetted FPGA architecture, and the circuit VPR has
implementation on the architecture.

5.3.1 Enabling Graphics

Compiling with Graphics Support

The build system will attempt to build VPR with graphics support by default.

If all the required libraries are found the build system will report:

-- EZGL: graphics enabled

If the required libraries are not found cmake will report:
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-- EZGL: graphics disabled

and list the missing libraries:

-- EZGL: Failed to find required X11 library (on debian/ubuntu try 'sudo apt-get
→˓install libx11-dev' to install)
-- EZGL: Failed to find required Xft library (on debian/ubuntu try 'sudo apt-get
→˓install libxft-dev' to install)
-- EZGL: Failed to find required fontconfig library (on debian/ubuntu try 'sudo apt-
→˓get install fontconfig' to install)
-- EZGL: Failed to find required cairo library (on debian/ubuntu try 'sudo apt-get
→˓install libcairo2-dev' to install)

Enabling Graphics at Run-time

When running VPR provide vpr --disp on to enable graphics.

Saving Graphics at Run-time

When running VPR provide vpr --save_graphics on to enable graphics.

A graphical window will now pop up when you run VPR.

5.3.2 Navigation

Click on Zoom-Fit buttons to zoom the view. Click and drag the mouse wheel to pan the view, or scroll the mouse
wheel to zoom in and out. Click on the Window, then on the diagonally opposite corners of a box, to zoom in on a
particular area.

Click on Save to save the image on screen to PDF, PNG, or SVG file.

Proceed tells VPR to continue with the next step in placing and routing the circuit.

Note: Menu buttons will be greyed out when they are not selectable (e.g. VPR is working).

5.3.3 Visualizing Placement

By default VPR’s graphics displays the FPGA floorplan (block grid) and current placement.

Fig. 5.2: Placement with macros (carry chains) highlighted

If the Placement Macros drop down is set, any placement macros (e.g. carry chains, which require specific relative
placements between some blocks) will be highlighted.
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5.3.4 Visualizing Netlist Connectivity

The Toggle Nets drop-down list toggles the nets in the circuit visible/invisible.

When a placement is being displayed, routing information is not yet known so nets are simply drawn as a “star;” that
is, a straight line is drawn from the net source to each of its sinks. Click on any clb in the display, and it will be
highlighted in green, while its fanin and fanout are highlighted in blue and red, respectively. Once a circuit has been
routed the true path of each net will be shown.

Fig. 5.3: Logical net connectivity during placement

If the nets routing are shown, click on a clb or pad to highlight its fanins and fanouts, or click on a pin or channel wire
to highlight a whole net in magenta. Multiple nets can be highlighted by pressing ctrl + mouse click.

5.3.5 Visualizing the Critical Path

During placement and routing you can click on the Crit. Path drop-down menu to visualize the critical path. Each
stage between primitive pins is shown in a different colour. Cliking the Crit. Path button again will toggle through
the various visualizations: * During placement the critical path is shown only as flylines. * During routing the critical
path can be shown as both flylines and routed net connections.

Fig. 5.4: Critical Path flylines during placement and routing

5.3.6 Visualizing Routing Architecture

When a routing is on-screen, clicking on Toggle RR lets you to choose between various views of the routing resources
available in the FPGA.

Fig. 5.5: Routing Architecture Views

The routing resource view can be very useful in ensuring that you have correctly described your FPGA in the architec-
ture description file – if you see switches where they shouldn’t be or pins on the wrong side of a clb, your architecture
description needs to be revised.

Wiring segments are drawn in black, input pins are drawn in sky blue, and output pins are drawn in pink. Sinks are
drawn in dark slate blue, and sources in plum. Direct connections between output and input pins are shown in medium
purple. Connections from wiring segments to input pins are shown in sky blue, connections from output pins to wiring
segments are shown in pink, and connections between wiring segments are shown in green. The points at which wiring
segments connect to clb pins (connection box switches) are marked with an x.

Switch box connections will have buffers (triangles) or pass transistors (circles) drawn on top of them, depending on
the type of switch each connection uses. Clicking on a clb or pad will overlay the routing of all nets connected to
that block on top of the drawing of the FPGA routing resources, and will label each of the pins on that block with its
pin number. Clicking on a routing resource will highlight it in magenta, and its fanouts will be highlighted in red and
fanins in blue. Multiple routing resources can be highlighted by pressing ctrl + mouse click.
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5.3.7 Visualizing Routing Congestion

When a routing is shown on-screen, clicking on the Congestion drop-down menu will show a heat map of any overused
routing resources (wires or pins). Lighter colours (e.g. yellow) correspond to highly overused resources, while darker
colours (e.g. blue) correspond to lower overuse. The overuse range shown at the bottom of the window.

Fig. 5.6: Routing Congestion during placement and routing

5.3.8 Visualizing Routing Utilization

When a routing is shown on-screen, clicking on the Routing Util drop-down menu will show a heat map of routing
wire utilization (i.e. fraction of wires used in each channel). Lighter colours (e.g. yellow) correspond to highly utilized
channels, while darker colours (e.g. blue) correspond to lower utilization.

Fig. 5.7: Routing Utilization during placement and routing

5.3.9 Button Description Table

But-
tons

Stages Functionalities Detailed Descriptions

Blk
Inter-
nal

Place-
ment/Routing

Controls depth of sub-blocks shown Click multiple times to show more details; Click
to reset when reached maximum level of detail

Blk
Pin
Util

Place-
ment/Routing

Visualizes block pin utilization Click multiple times to visualize all block pin
utilization, input block pin utilization, or output
block pin utilization

Cong.
Cost

Rout-
ing

Visualizes the congestion costs of routing
resouces

Con-
ges-
tion

Rout-
ing

Visualizes a heat map of overused routing
resources

Crit.
Path

Place-
ment/Routing

Visualizes the critical path of the circuit

Place
Macros

Place-
ment/Routing

Visualizes placement macros

Route
BB

Rout-
ing

Visualizes net bounding boxes one by one Click multiple times to sequence through the net
being shown

Router
Cost

Rout-
ing

Visualizes the router costs of different rout-
ing resources

Rout-
ing
Util

Rout-
ing

Visualizes routing channel utilization with
colors indicating the fraction of wires used
within a channel

Tog-
gle
Nets

Place-
ment/Routing

Visualizes the nets in the circuit Click multiple times to set the nets to be visible
/ invisible

Tog-
gle
RR

Place-
ment/Routing

Visualizes different views of the routing re-
sources

Click multiple times to switch between routing
resources available in the FPGA
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5.4 Timing Constraints

VPR supports setting timing constraints using Synopsys Design Constraints (SDC), an industry-standard format for
specifying timing constraints.

VPR’s default timing constraints are explained in Default Timing Constraints. The subset of SDC supported by VPR
is described in SDC Commands. Additional SDC examples are shown in SDC Examples.

See also:

The Primitive Timing Modelling Tutorial which covers how to describe the timing characteristics of architecture prim-
itives.

5.4.1 Default Timing Constraints

If no timing constriants are specified, VPR assumes default constraints based on the type of circuit being analyzed.

Combinational Circuits

Constrain all I/Os on a virtual clock virtual_io_clock, and optimize this clock to run as fast as possible.

Equivalent SDC File:

create_clock -period 0 -name virtual_io_clock
set_input_delay -clock virtual_io_clock -max 0 [get_ports {*}]
set_output_delay -clock virtual_io_clock -max 0 [get_ports {*}]

Single-Clock Circuits

Constrain all I/Os on the netlist clock, and optimize this clock to run as fast as possible.

Equivalent SDC File:

create_clock -period 0 *
set_input_delay -clock * -max 0 [get_ports {*}]
set_output_delay -clock * -max 0 [get_ports {*}]

Multi-Clock Circuits

Constrain all I/Os a virtual clock virtual_io_clock. Does not analyse paths between netlist clock domains, but
analyses all paths from I/Os to any netlist domain. Optimizes all clocks, including I/O clocks, to run as fast as possible.

Warning: By default VPR does not analyze paths between netlist clock domains.

Equivalent SDC File:

create_clock -period 0 *
create_clock -period 0 -name virtual_io_clock
set_clock_groups -exclusive -group {clk} -group {clk2}
set_input_delay -clock virtual_io_clock -max 0 [get_ports {*}]
set_output_delay -clock virtual_io_clock -max 0 [get_ports {*}]
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Where clk and clk2 are the netlist clocks in the design. This is similarily extended if there are more than two netlist
clocks.

5.5 SDC Commands

The following subset of SDC syntax is supported by VPR.

5.5.1 create_clock

Creates a netlist or virtual clock.

Assigns a desired period (in nanoseconds) and waveform to one or more clocks in the netlist (if the -name option
is omitted) or to a single virtual clock (used to constrain input and outputs to a clock external to the design). Netlist
clocks can be referred to using regular expressions, while the virtual clock name is taken as-is.

Example Usage:

#Create a netlist clock
create_clock -period <float> <netlist clock list or regexes>

#Create a virtual clock
create_clock -period <float> -name <virtual clock name>

#Create a netlist clock with custom waveform/duty-cycle
create_clock -period <float> -waveform {rising_edge falling_edge} <netlist clock list
→˓or regexes>

Omitting the waveform creates a clock with a rising edge at 0 and a falling edge at the half period, and is equivalent
to using -waveform {0 <period/2>}. Non-50% duty cycles are supported but behave no differently than 50%
duty cycles, since falling edges are not used in analysis. If a virtual clock is assigned using a create_clock command,
it must be referenced elsewhere in a set_input_delay or set_output_delay constraint.

create_clock

-period <float>
Specifies the clock period.

Required: Yes

-waveform {<float> <float>}
Overrides the default clock waveform.

The first value indicates the time the clock rises, the second the time the clock falls.

Required: No

Default: 50% duty cycle (i.e. -waveform {0 <period/2>}).

-name <string>
Creates a virtual clock with the specified name.

Required: No

<netlist clock list or regexes>
Creates a netlist clock

Required: No
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Note: One of -name or <netlist clock list or regexes> must be specified.

Warning: If a netlist clock is not specified with a create_clock command, paths to and from that clock
domain will not be analysed.

5.5.2 set_clock_groups

Specifies the relationship between groups of clocks. May be used with netlist or virtual clocks in any combination.

Since VPR supports only the -exclusive option, a set_clock_groups constraint is equivalent to a
set_false_path constraint (see below) between each clock in one group and each clock in another.

For example, the following sets of commands are equivalent:

#Do not analyze any timing paths between clk and clk2, or between
#clk and clk3
set_clock_groups -exclusive -group {clk} -group {clk2 clk3}

and

set_false_path -from [get_clocks {clk}] -to [get_clocks {clk2 clk3}]
set_false_path -from [get_clocks {clk2 clk3}] -to [get_clocks {clk}]

set_clock_groups

-exclusive
Indicates that paths between clock groups should not be analyzed.

Required: Yes

Note: VPR currently only supports exclusive clock groups

-group {<clock list or regexes>}
Specifies a group of clocks.

Note: At least 2 groups must be specified.

Required: Yes
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5.5.3 set_false_path

Cuts timing paths unidirectionally from each clock in -from to each clock in -to. Otherwise equivalent to
set_clock_groups.

Example Usage:

#Do not analyze paths launched from clk and captured by clk2 or clk3
set_false_path -from [get_clocks {clk}] -to [get_clocks {clk2 clk3}]

#Do not analyze paths launched from clk2 or clk3 and captured by clk
set_false_path -from [get_clocks {clk2 clk3}] -to [get_clocks {clk}]

Note: False paths are supported between entire clock domains, but not between individual registers.

set_false_path

-from [get_clocks <clock list or regexes>]
Specifies the source clock domain(s).

Required: No

Default: All clocks

-to [get_clocks <clock list or regexes>]
Specifies the sink clock domain(s).

Required: No

Default: All clocks

5.5.4 set_max_delay/set_min_delay

Overrides the default setup (max) or hold (min) timing constraint calculated using the information from
create_clock with a user-specified delay.

Example Usage:

#Specify a maximum delay of 17 from input_clk to output_clk
set_max_delay 17 -from [get_clocks {input_clk}] -to [get_clocks {output_clk}]

#Specify a minimum delay of 2 from input_clk to output_clk
set_min_delay 2 -from [get_clocks {input_clk}] -to [get_clocks {output_clk}]

Note: Max/Min delays are supported between entire clock domains, but not between individual netlist elements.

set_max_delay/set_min_delay

<delay>
The delay value to apply.

Required: Yes
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-from [get_clocks <clock list or regexes>]
Specifies the source clock domain(s).

Required: No

Default: All clocks

-to [get_clocks <clock list or regexes>]
Specifies the sink clock domain(s).

Required: No

Default: All clocks

5.5.5 set_multicycle_path

Sets how many clock cycles elapse between the launch and capture edges for setup and hold checks.

The default the setup mutlicycle value is 1 (i.e. the capture setup check is performed against the edge one cycle after
the launch edge).

The default hold multicycle is one less than the setup multicycle path (e.g. the capture hold check occurs in the same
cycle as the launch edge for the default setup multicycle).

Example Usage:

#Create a 4 cycle setup check, and 0 cycle hold check from clkA to clkB
set_multicycle_path -from [get_clocks {clkA}] -to [get_clocks {clkB}] 4

#Create a 3 cycle setup check from clk to clk2
# Note that this moves the default hold check to be 2 cycles
set_multicycle_path -setup -from [get_clocks {clk}] -to [get_clocks {clk2}] 3

#Create a 0 cycle hold check from clk to clk2
# Note that this moves the default hold check back to it's original
# position before the previous setup setup_multicycle_path was applied
set_multicycle_path -hold -from [get_clocks {clk}] -to [get_clocks {clk2}] 2

#Create a multicycle to a specific pin
set_multicycle_path -to [get_pins {my_inst.in\[0\]}] 2

Note: Multicycles are supported between entire clock domains, and ending at specific registers.

set_multicycle_path

-setup
Indicates that the multicycle-path applies to setup analysis.

Required: No

-hold
Indicates that the multicycle-path applies to hold analysis.

Required: No

-from [get_clocks <clock list or regexes>]
Specifies the source clock domain(s).

Required: No
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Default: All clocks

-to [get_clocks <clock list or regexes>]
Specifies the sink clock domain(s).

Required: No

Default: All clocks

-to [get_pins <pin list or regexes>]
Specifies the sink/capture netlist pins to which the multicycle is applied.

See also:

VPR’s pin naming convention.

Required: No

<path_multiplier>
The number of cycles that apply to the specified path(s).

Required: Yes

Note: If neither -setup nor -hold the setup multicycle is set to path_multiplier and the hold multicycle
offset to 0.

Note: Only a single -to option can be specified (either clocks or pins, but not both).

5.5.6 set_input_delay/set_output_delay

Use set_input_delay if you want timing paths from input I/Os analyzed, and set_output_delay if you
want timing paths to output I/Os analyzed.

Note: If these commands are not specified in your SDC, paths from and to I/Os will not be timing analyzed.

These commands constrain each I/O pad specified after get_ports to be timing-equivalent to a register clocked on
the clock specified after -clock. This can be either a clock signal in your design or a virtual clock that does not exist
in the design but which is used only to specify the timing of I/Os.

The specified delays are added to I/O timing paths and can be used to model board level delays.

For single-clock circuits, -clock can be wildcarded using * to refer to the single netlist clock, although this is not
supported in standard SDC. This allows a single SDC command to constrain I/Os in all single-clock circuits.

Example Usage:

#Set a maximum input delay of 0.5 (relative to input_clk) on
#ports in1, in2 and in3
set_input_delay -clock input_clk -max 0.5 [get_ports {in1 in2 in3}]

#Set a minimum output delay of 1.0 (relative to output_clk) on
#all ports matching starting with 'out*'
set_output_delay -clock output_clk -min 1 [get_ports {out*}]

#Set both the maximum and minimum output delay to 0.3 for all I/Os

(continues on next page)
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(continued from previous page)

#in the design
set_output_delay -clock clk2 0.3 [get_ports {*}]

set_input_delay/set_output_delay

-clock <virtual or netlist clock>
Specifies the virtual or netlist clock the delay is relative to.

Required: Yes

-max
Specifies that the delay value should be treated as the maximum delay.

Required: No

-min
Specifies that the delay value should be treated as the minimum delay.

Required: No

<delay>
Specifies the delay value to be applied

Required: Yes

[get_ports {<I/O list or regexes>}]
Specifies the port names or port name regex.

Required: Yes

Note: If neither -min nor -max are specified the delay value is applied to both.

5.5.7 set_clock_uncertainty

Sets the clock uncertainty between clock domains. This is typically used to model uncertainty in the clock arrival
times due to clock jitter.

Example Usage:

#Sets the clock uncertainty between all clock domain pairs to 0.025
set_clock_uncertainty 0.025

#Sets the clock uncertainty from 'clk' to all other clock domains to 0.05
set_clock_uncertainty -from [get_clocks {clk}] 0.05

#Sets the clock uncertainty from 'clk' to 'clk2' to 0.75
set_clock_uncertainty -from [get_clocks {clk}] -to [get_clocks {clk2}] 0.75

set_clock_uncertainty

-from [get_clocks <clock list or regexes>]
Specifies the source clock domain(s).

Required: No

Default: All clocks
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-to [get_clocks <clock list or regexes>]
Specifies the sink clock domain(s).

Required: No

Default: All clocks

-setup
Specifies the clock uncertainty for setup analysis.

Required: No

-hold
Specifies the clock uncertainty for hold analysis.

Required: No

<uncertainty>
The clock uncertainty value between the from and to clocks.

Required: Yes

Note: If neither -setup nor -hold are specified the uncertainty value is applied to both.

5.5.8 set_clock_latency

Sets the latency of a clock. VPR automatically calculates on-chip clock network delay, and so only source latency is
supported.

Source clock latency corresponds to the delay from the true clock source (e.g. off-chip clock generator) to the on-chip
clock definition point.

#Sets the source clock latency of 'clk' to 1.0
set_clock_latency -source 1.0 [get_clocks {clk}]

set_clock_latency

-source
Specifies that the latency is the source latency.

Required: Yes

-early
Specifies that the latency applies to early paths.

Required: No

-late
Specifies that the latency applies to late paths.

Required: No

<latency>
The clock’s latency.

Required: Yes

[get_clocks <clock list or regexes>]
Specifies the clock domain(s).
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Required: Yes

Note: If neither -early nor -late are specified the latency value is applied to both.

5.5.9 set_disable_timing

Disables timing between a pair of connected pins in the netlist. This is typically used to manually break combinational
loops.

#Disables the timing edge between the pins 'FFA.Q[0]' and 'to_FFD.in[0]' on
set_disable_timing -from [get_pins {FFA.Q\\[0\\]}] -to [get_pins {to_FFD.in\\[0\\]}]

set_disable_timing

-from [get_pins <pin list or regexes>]
Specifies the source netlist pins.

See also:

VPR’s pin naming convention.

Required: Yes

-to [get_pins <pin list or regexes>]
Specifies the sink netlist pins.

See also:

VPR’s pin naming convention.

Required: Yes

Note: Make sure to escape the characters in the regexes.

5.5.10 Special Characters

# (comment), \\ (line continued), * (wildcard), {} (string escape)
# starts a comment – everything remaining on this line will be ignored.

\ at the end of a line indicates that a command wraps to the next line.

* is used in a get_clocks/get_ports command or at the end of create_clock to match all netlist
clocks. Partial wildcarding (e.g. clk* to match clk and clk2) is also supported. As mentioned above, *
can be used in set_input_delay and set_output delay to refer to the netlist clock for single-clock circuits only,
although this is not supported in standard SDC.

{} escapes strings, e.g. {top^clk} matches a clock called top^clk, while top^clk without braces gives
an error because of the special ^ character.
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5.5.11 SDC Examples

The following are sample SDC files for common non-default cases (assuming netlist clock domains clk and clk2).

A

Cut I/Os and analyse only register-to-register paths, including paths between clock domains; optimize to run as fast as
possible.

create_clock -period 0 *

B

Same as A, but with paths between clock domains cut. Separate target frequencies are specified.

create_clock -period 2 clk
create_clock -period 3 clk2
set_clock_groups -exclusive -group {clk} -group {clk2}

C

Same as B, but with paths to and from I/Os now analyzed. This is the same as the multi-clock default, but with custom
period constraints.

create_clock -period 2 clk
create_clock -period 3 clk2
create_clock -period 3.5 -name virtual_io_clock
set_clock_groups -exclusive -group {clk} -group {clk2}
set_input_delay -clock virtual_io_clock -max 0 [get_ports {*}]
set_output_delay -clock virtual_io_clock -max 0 [get_ports {*}]

D

Changing the phase between clocks, and accounting for delay through I/Os with set_input/output delay constraints.

#Custom waveform rising edge at 1.25, falling at 2.75
create_clock -period 3 -waveform {1.25 2.75} clk
create_clock -period 2 clk2
create_clock -period 2.5 -name virtual_io_clock
set_input_delay -clock virtual_io_clock -max 1 [get_ports {*}]
set_output_delay -clock virtual_io_clock -max 0.5 [get_ports {*}]
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E

Sample using many supported SDC commands. Inputs and outputs are constrained on separate virtual clocks.

create_clock -period 3 -waveform {1.25 2.75} clk
create_clock -period 2 clk2
create_clock -period 1 -name input_clk
create_clock -period 0 -name output_clk
set_clock_groups -exclusive -group input_clk -group clk2
set_false_path -from [get_clocks {clk}] -to [get_clocks {output_clk}]
set_max_delay 17 -from [get_clocks {input_clk}] -to [get_clocks {output_clk}]
set_multicycle_path -setup -from [get_clocks {clk}] -to [get_clocks {clk2}] 3
set_input_delay -clock input_clk -max 0.5 [get_ports {in1 in2 in3}]
set_output_delay -clock output_clk -max 1 [get_ports {out*}]

F

Sample using all remaining SDC commands.

create_clock -period 3 -waveform {1.25 2.75} clk
create_clock -period 2 clk2
create_clock -period 1 -name input_clk
create_clock -period 0 -name output_clk
set_clock_latency -source 1.0 [get_clocks{clk}]
#if neither early nor late is specified then the latency applies to early paths
set_clock_groups -exclusive -group input_clk -group clk2
set_false_path -from [get_clocks{clk}] -to [get_clocks{output_clk}]
set_input_delay -clock input_clk -max 0.5 [get_ports{in1 in2 in3}]
set_output_delay -clock output_clk -min 1 [get_ports{out*}]
set_max_delay 17 -from [get_clocks{input_clk}] -to [get_clocks{output_clk}]
set_min_delay 2 -from [get_clocks{input_clk}] -to [get_clocks{output_clk}]
set_multicycle_path -setup -from [get_clocks{clk}] -to [get_clocks{clk2}] 3
#For multicycle_path, if setup is specified then hold is also implicity specified
set_clock_uncertainty -from [get_clocks{clk}] -to [get_clocks{clk2}] 0.75
#For set_clock_uncertainty, if neither setup nor hold is unspecified then uncertainty
→˓is applied to both
set_disable_timing -from [get_pins {FFA.Q\\[0\\]}] -to [get_pins {to_FFD.in\\[0\\]}]

5.6 File Formats

VPR consumes and produces several files representing the packing, placement, and routing results.

5.6.1 FPGA Architecture (.xml)

The target FPGA architecture is specified as an architecture file. For details of this file format see FPGA Architecture
Description.
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5.6.2 BLIF Netlist (.blif)

The technology mapped circuit to be implement on the target FPGA is specified as a Berkely Logic Interchange Format
(BLIF) netlist. The netlist must be flattened and consist of only primitives (e.g. .names, .latch, .subckt).

For a detailed description of the BLIF file format see the BLIF Format Description.

Note that VPR supports only the structural subset of BLIF, and does not support the following BLIF features:

• Subfile References (.search).

• Finite State Machine Descriptions (.start_kiss, .end_kiss etc.).

• Clock Constraints (.cycle, .clock_event).

• Delay Constraints (.delay etc.).

Clock and delay constraints can be specified with an SDC File.

Note: By default VPR assumes file with .blif are in structural BLIF format. The format can be controlled with
vpr --circuit_format.

Black Box Primitives

Black-box architectural primitives (RAMs, Multipliers etc.) should be instantiated in the netlist using BLIF’s .
subckt directive. The BLIF file should also contain a black-box .model definition which defines the input and
outputs of each .subckt type.

VPR will check that blackbox .models are consistent with the <models> section of the architecture file.

Unconnected Primitive Pins

Unconnected primitive pins can be specified through several methods.

1. The unconn net (input pins only).

VPR treats any input pin connected to a net named unconn as disconnected.

For example:

.names unconn out
0 1

specifies an inverter with no connected input.

Note: unconn should only be used for input pins. It may cause name conflicts and create
multi-driven nets if used with output pins.

2. Implicitly disconnected .subckt pins.

For .subckt instantiations VPR treats unlisted primitive pins as implicitly disconnected. This
works for both input and output pins.

For example the following .subckt instantiations are equivalent:
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.subckt single_port_ram \
clk=top^clk \
data=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~546 \
addr[0]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~541 \
addr[1]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~542 \
addr[2]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~543 \
addr[3]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~544 \
addr[4]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~545 \
addr[5]=unconn \
addr[6]=unconn \
addr[7]=unconn \
addr[8]=unconn \
addr[9]=unconn \
addr[10]=unconn \
addr[11]=unconn \
addr[12]=unconn \
addr[13]=unconn \
addr[14]=unconn \
we=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~554 \
out=top.memory_controller+memtroll.single_port_ram+str^out~0

.subckt single_port_ram \
clk=top^clk \
data=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~546 \
addr[0]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~541 \
addr[1]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~542 \
addr[2]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~543 \
addr[3]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~544 \
addr[4]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~545 \
we=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~554 \
out=top.memory_controller+memtroll.single_port_ram+str^out~0

3. Dummy nets with no sinks (output pins only)

By default VPR sweeps away nets with no sinks (see vpr --sweep_dangling_nets). As a
result output pins can be left ‘disconnected’ by connecting them to dummy nets.

For example:

.names in dummy_net1
0 1

specifies an inverter with no connected output (provided dummy_net1 is connected to no other
pins).

Note: This method requires that every disconnected output pin should be connected to a uniquely
named dummy net.
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BLIF File Format Example

The following is an example BLIF file. It implements a 4-bit ripple-carry adder and some simple logic.

The main .model is named top, and its input and output pins are listed using the .inputs and .outputs
directives.

The 4-bit ripple-cary adder is built of 1-bit adder primitives which are instantiated using the .subckt directive.
Note that the adder primitive is defined as its own .model (which describes its pins), and is marked as .blackbox
to indicate it is an architectural primitive.

The signal all_sum_high_comb is computed using combinational logic (.names) which ANDs all the sum bits
together.

The .latch directive instantiates a rising-edge (re) latch (i.e. an edge-triggered Flip-Flop) clocked by clk. It takes
in the combinational signal all_sum_high_comb and drives the primary output all_sum_high_reg.

Also note that the last .subckt adder has it’s cout output left implicitly disconnected.

.model top

.inputs clk a[0] a[1] a[2] a[3] b[0] b[1] b[2] b[3]

.outputs sum[0] sum[1] sum[2] sum[3] cout all_sum_high_reg

.names gnd
0

.subckt adder a=a[0] b=b[0] cin=gnd cout=cin[1] sumout=sum[0]

.subckt adder a=a[1] b=b[1] cin=cin[1] cout=cin[2] sumout=sum[1]

.subckt adder a=a[2] b=b[2] cin=cin[2] cout=cin[3] sumout=sum[2]

.subckt adder a=a[3] b=b[3] cin=cin[3] sumout=sum[3]

.names sum[0] sum[1] sum[2] sum[3] all_sum_high_comb
1111 1

.latch all_sum_high_comb all_sum_high_reg re clk 0

.end

.model adder

.inputs a b cin

.outputs cout sumout

.blackbox

.end
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BLIF Naming Convention

VPR follows a naming convention to refer to primitives and pins in the BLIF netlist. These names appear in the VPR
GUI, in log and error messages, and in can be used elsewhere (e.g. in SDC constraints).

Net Names

The BLIF format uses explicit names to refer to nets. These names are used directly as is by VPR (although some nets
may be merged/removed by netlist cleaning).

For example, the following netlist:

.model top

.inputs a b

.outputs c

.names a b c
11 1

.end

contains nets named:

• a

• b

• c

Primitive Names

The standard BLIF format has no mechanism for specifying the names of primitives (e.g. .names/.latch/.
subckt). As a result, tools processing BLIF follow a naming convention which generates unique names for each
netlist primitive.

The VPR primitive naming convention is as follows:

Primitive Drives at least one net? Primitive Name
• .input
• .names
• .latch
• .subckt

Yes Name of first driven net

No Arbitrarily generated (e.g.
unamed_instances_K)

• .output
N/A .output name prefixed with out:

which ensures each netlist primitive is given a unique name.

For example, in the following:

.model top

.inputs a b x y z clk

.outputs c c_reg cout[0] sum[0]

.names a b c
11 1

(continues on next page)
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(continued from previous page)

.latch c c_reg re clk 0

.subckt adder a=x b=y cin=z cout=cout[0] sumout=sum[0]

.end

.model adder

.inputs a b cin

.outputs cout sumout

.blackbox

.end

• The circuit primary inputs (.inputs) are named: a, b, x, y, z, clk,

• The 2-LUT (.names) is named c,

• The FF (.latch) is named c_reg,

• The adder (.subckt) is named cout[0] (the name of the first net it drives), and

• The circuit primary outputs (.outputs) are named: out:c, out:c_reg, out:cout[0], out:sum[0].

See also:

EBLIF’s .cname extension, which allows explicit primitive names to be specified.

Pin Names

It is useful to be able to refer to particular pins in the netlist. VPR uses the convention:
<primitive_instance_name>.<pin_name>. Where <primitive_instance_name> is replaced with
the netlist primitive name, and <pin_name> is the name of the relevant pin.

For example, the following adder:

.subckt adder a=x b=y cin=z cout=cout[0] sumout=sum[0]

which has pin names:

• cout[0].a[0] (driven by net x)

• cout[0].b[0] (driven by net y)

• cout[0].cin[0] (driven by net z)

• cout[0].cout[0] (drives net cout[0])

• cout[0].sumout[0] (drives net sum[0])

Since the primitive instance itself is named cout[0] by convention.
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Built-in Primitive Pin Names

The built-in primitives in BLIF (.names, .latch) do not explicitly list the names of their input/output pins. VPR
uses the following convention:

Primitive Port Name
.names input in

output out
.latch input D

output Q
control clk

Consider the following:

.names a b c d e f
11111 1

.latch g h re clk 0

The .names’ pin names are:

• f.in[0] (driven by net a)

• f.in[1] (driven by net b)

• f.in[2] (driven by net c)

• f.in[3] (driven by net d)

• f.in[4] (driven by net e)

• f.out[0] (drives net f)

and the .latch pin names are:

• h.D[0] (driven by net g)

• h.Q[0] (drives net h)

• h.clk[0] (driven by net clk)

since the .names and .latch primitives are named f and h by convention.

Note: To support pins within multi-bit ports unambiguously, the bit index of the pin within its associated port is
included in the pin name (for single-bit ports this will always be [0]).

5.6.3 Extended BLIF (.eblif)

VPR also supports several extentions to structural BLIF to address some of its limitations.

Note: By default VPR assumes file with .eblif are in extneded BLIF format. The format can be controlled with
vpr --circuit_format.
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.conn

The .conn statement allows direct connections between two wires.

For example:

.model top

.input a

.output b

#Direct connection
.conn a b

.end

specifies that ‘a’ and ‘b’ are direct connected together. This is analogous to Verilog’s assign b = a;.

This avoids the insertion of a .names buffer which is required in standard BLIF, for example:

.model top

.input a

.output b

#Buffer LUT required in standard BLIF
.names a b
1 1

.end

.cname

The .cname statement allows names to be specified for BLIF primitives (e.g. .latch, .names, .subckt).

Note: .cname statements apply to the previous primitive instantiation.

For example:

.names a b c
11 1
.cname my_and_gate

Would name of the above .names instance my_and_gate.

.param

The .param statement allows parameters (e.g. primitive modes) to be tagged on BLIF primitives.

Note: .param statements apply to the previous primitive instantiation.

For example:

.subckt dsp a=a_in b=b_in cin=c_in cout=c_out s=sum_out

.param mode adder
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Would set the parameter mode of the above dsp .subckt to adder.

.param statements propagate to <parameter> elements in the packed netlist.

.attr

The .attr statement allows attributes (e.g. source file/line) to be tagged on BLIF primitives.

Note: .attr statements apply to the previous primitive instantiation.

For example:

.latch a_and_b dff_q re clk 0

.attr src my_design.v:42

Would set the attribute src of the above .latch to my_design.v:42.

.attr statements propagate to <attribute> elements in the packed netlist.

Extended BLIF File Format Example

.model top

.inputs a b clk

.outputs o_dff

.names a b a_and_b
11 1
.cname lut_a_and_b
.param test_names_param "test_names_param_value"
.attr test_names_attrib "test_names_param_attrib"

.latch a_and_b dff_q re clk 0

.cname my_dff

.param test_latch_param "test_latch_param_value"

.attr test_latch_attrib "test_latch_param_attrib"

.conn dff_q o_dff

.end

5.6.4 Timing Constraints (.sdc)

Timing constraints are specified using SDC syntax. For a description of VPR’s SDC support see SDC Commands.

Note: Use vpr --sdc_file to specify the SDC file used by VPR.

5.6. File Formats 181



Verilog-to-Routing Documentation, Release 8.1.0-dev

Timing Constraints File Format Example

See SDC Examples.

5.6.5 Packed Netlist Format (.net)

The circuit .net file is an xml file that describes a post-packed user circuit. It represents the user netlist in terms of the
complex logic blocks of the target architecture. This file is generated from the packing stage and used as input to the
placement stage in VPR.

The .net file is constructed hierarchically using block tags. The top level block tag contains the I/Os and com-
plex logic blocks used in the user circuit. Each child block tag of this top level tag represents a single complex
logic block inside the FPGA. The block tags within a complex logic block tag describes, hierarchically, the clus-
ters/modes/primitives used internally within that logic block.

A block tag has the following attributes:

• name A name to identify this component of the FPGA. This name can be completely arbitrary except in two
situations. First, if this is a primitive (leaf) block that implements an atom in the input technology-mapped
netlist (eg. LUT, FF, memory slice, etc), then the name of this block must match exactly with the name of
the atom in that netlist so that one can later identify that mapping. Second, if this block is not used, then
it should be named with the keyword open. In all other situations, the name is arbitrary.

• instance The phyiscal block in the FPGA architecture that the current block represents. Should be of for-
mat: architecture_instance_name[instance #]. For example, the 5th index BLE in a CLB should have
instance="ble[5]"

• mode The mode the block is operating in.

A block connects to other blocks via pins which are organized based on a hierarchy. All block tags contains the
children tags: inputs, outputs, clocks. Each of these tags in turn contain port tags. Each port tag has an attribute name
that matches with the name of a corresponding port in the FPGA architecture. Within each port tag is a list of named
connections where the first name corresponds to pin 0, the next to pin 1, and so forth. The names of these connections
use the following format:

1. Unused pins are identified with the keyword open.

2. The name of an input pin to a complex logic block is the same as the name of the net using that pin.

3. The name of an output pin of a primitve (leaf block) is the same as the name of the net using that pin.

4. The names of all other pins are specified by describing their immediate drivers. This format is
[name_of_immediate_driver_block].[port_name][pin#]->interconnect_name.

For primitives with equivalent inputs VPR may rotate the input pins. The resulting rotation is specified with the
<port_rotation_map> tag. For example, consider a netlist contains a 2-input LUT named c, which is imple-
mented in a 5-LUT:

Listing 5.1: Example of <port_rotation_map> tag.

1 ...
2 <block name="c" instance="lut[0]">
3 <inputs>
4 <port name="in">open open lut5.in[2]->direct:lut5 open lut5.in[4]->

→˓direct:lut5 </port>
5 <port_rotation_map name="in">open open 1 open 0 </port_rotation_map>
6 </inputs>
7 <outputs>
8 <port name="out">c </port>

(continues on next page)
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(continued from previous page)

9 </outputs>
10 <clocks>
11 </clocks>
12 </block>
13 ...

In the original netlist the two LUT inputs were connected to pins at indicies 0 and 1 (the only input pins). However
during clustering the inputs were rotated, and those nets now connect to the pins at indicies 2 and 4 (line 4). The
<port_rotation_map> tag specified the port name it applies to (name attribute), and its contents lists the pin
indicies each pin in the port list is associated with in the original netlist (i.e. the pins lut5.in[2]->direct:lut5
and lut5.in[4]->direct:lut5 respectively correspond to indicies 1 and 0 in the original netlist).

Note: Use vpr --net_file to override the default net file name.

Packing File Format Example

The following is an example of what a .net file would look like. In this circuit there are 3 inputs (pa, pb, pc) and 4
outputs (out:pd, out:pe, out:pf, out:pg). The io pad is set to inpad mode and is driven by the inpad:

Listing 5.2: Example packed netlist file (trimmed for brevity).

1 <block name="b1.net" instance="FPGA_packed_netlist[0]">
2 <inputs>
3 pa pb pc
4 </inputs>
5

6 <outputs>
7 out:pd out:pe out:pf out:pg
8 </outputs>
9

10 <clocks>
11 </clocks>
12

13 <block name="pa" instance="io[0]" mode="inpad">
14 <inputs>
15 <port name="outpad">open </port>
16 </inputs>
17

18 <outputs>
19 <port name="inpad">inpad[0].inpad[0]->inpad </port>
20 </outputs>
21

22 <clocks>
23 <port name="clock">open </port>
24 </clocks>
25

26 <block name="pa" instance="inpad[0]">
27 <inputs>
28 </inputs>
29

30 <outputs>
31 <port name="inpad">pa </port>
32 </outputs>

(continues on next page)
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33

34 <clocks>
35 </clocks>
36

37 <attributes>
38 <attribute name="vccio">3.3</attribute>
39 </attributes>
40

41 <parameters>
42 <parameter name="iostandard">LVCMOS33</parameter>
43 </parameters>
44 </block>
45 </block>
46 ...

5.6.6 Placement File Format (.place)

The first line of the placement file lists the netlist (.net) and architecture (.xml) files used to create this placement. This
information is used to ensure you are warned if you accidentally route this placement with a different architecture or
netlist file later. The second line of the file gives the size of the logic block array used by this placement. All the
following lines have the format:

block_name x y subblock_number

The block_name is the name of this block, as given in the input .net formatted netlist. x and y are the row and
column in which the block is placed, respectively.

Note: The blocks in a placement file can be listed in any order.

The subblock number is meaningful only for I/O pads. Since we can have more than one pad in a row or column
when io_rat is set to be greater than 1 in the architecture file, the subblock number specifies which of the several
possible pad locations in row x and column y contains this pad. Note that the first pads occupied at some (x, y)
location are always those with the lowest subblock numbers – i.e. if only one pad at (x, y) is used, the subblock
number of the I/O placed there will be zero. For CLBs, the subblock number is always zero.

The placement files output by VPR also include (as a comment) a fifth field: the block number. This is the internal
index used by VPR to identify a block – it may be useful to know this index if you are modifying VPR and trying to
debug something.

Fig. 5.8 shows the coordinate system used by VPR for a small 2 x 2 CLB FPGA. The number of CLBs in the x and y
directions are denoted by nx and ny, respectively. CLBs all go in the area with x between 1 and nx and y between 1
and ny, inclusive. All pads either have x equal to 0 or nx + 1 or y equal to 0 or ny + 1.

Note: Use vpr --place_file to override the default place file name.
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Fig. 5.8: FPGA co-ordinate system.

Placement File Format Example

An example placement file is:

Listing 5.3: Example placement file.

1 Netlist file: xor5.net Architecture file: sample.xml
2 Array size: 2 x 2 logic blocks
3

4 #block name x y subblk block number
5 #---------- -- -- ------- -----------
6 a 0 1 0 #0 -- NB: block number is a comment.
7 b 1 0 0 #1
8 c 0 2 1 #2
9 d 1 3 0 #3

10 e 1 3 1 #4
11 out:xor5 0 2 0 #5
12 xor5 1 2 0 #6
13 [1] 1 1 0 #7

5.6.7 Routing File Format (.route)

The first line of the routing file gives the array size, nx x ny. The remainder of the routing file lists the global or
the detailed routing for each net, one by one. Each routing begins with the word net, followed by the net index used
internally by VPR to identify the net and, in brackets, the name of the net given in the netlist file. The following
lines define the routing of the net. Each begins with a keyword that identifies a type of routing segment. The possible
keywords are SOURCE (the source of a certain output pin class), SINK (the sink of a certain input pin class), OPIN
(output pin), IPIN (input pin), CHANX (horizontal channel), and CHANY (vertical channel). Each routing begins on
a SOURCE and ends on a SINK. In brackets after the keyword is the (x, y) location of this routing resource. Finally,
the pad number (if the SOURCE, SINK, IPIN or OPIN was on an I/O pad), pin number (if the IPIN or OPIN was
on a clb), class number (if the SOURCE or SINK was on a clb) or track number (for CHANX or CHANY) is listed –
whichever one is appropriate. The meaning of these numbers should be fairly obvious in each case. If we are attaching
to a pad, the pad number given for a resource is the subblock number defining to which pad at location (x, y) we are
attached. See Fig. 5.8 for a diagram of the coordinate system used by VPR. In a horizontal channel (CHANX) track
0 is the bottommost track, while in a vertical channel (CHANY) track 0 is the leftmost track. Note that if only global
routing was performed the track number for each of the CHANX and CHANY resources listed in the routing will be 0,
as global routing does not assign tracks to the various nets.
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For an N-pin net, we need N-1 distinct wiring “paths” to connect all the pins. The first wiring path will always go
from a SOURCE to a SINK. The routing segment listed immediately after the SINK is the part of the existing routing
to which the new path attaches.

Note: It is important to realize that the first pin after a SINK is the connection into the already specified routing tree;
when computing routing statistics be sure that you do not count the same segment several times by ignoring this fact.

Note: Use vpr --route_file to override the default route file name.

Routing File Format Examples

An example routing for one net is listed below:

Listing 5.4: Example routing for a non-global net.

1 Net 5 (xor5)
2

3 Node: 1 SOURCE (1,2) Class: 1 Switch: 1 # Source for pins of class 1.
4 Node: 2 OPIN (1,2) Pin: 4 clb.O[12] Switch:0 #Output pin the O port of

→˓clb block, pin number 12
5 Node: 4 CHANX (1,1) to (4,1) Track: 1 Switch: 1
6 Node: 6 CHANX (4,1) to (7,1) Track: 1 Switch: 1
7 Node: 8 IPIN (7,1) Pin: 0 clb.I[0] Switch: 2
8 Node: 9 SINK (7,1) Class: 0 Switch: -1 # Sink for pins of class 0 on a clb.
9 Node: 4 CHANX (7,1) to (10,1) Track: 1 Switch: 1 # Note: Connection to

→˓existing routing!
10 Node: 5 CHANY (10,1) to (10,4) Track: 1 Switch: 0
11 Node: 4 CHANX (10,4) to (13,4) Track: 1 Switch: 1
12 Node: 10 CHANX (13,4) to (16,4) Track: 1 Switch: 1
13 Node: 11 IPIN (16,4) Pad: 1 clb.I[1] Switch: 2
14 Node: 12 SINK (16,4) Pad: 1 Switch: -1 # This sink is an output pad at (16,

→˓4), subblock 1.

Nets which are specified to be global in the netlist file (generally clocks) are not routed. Instead, a list of the blocks
(name and internal index) which this net must connect is printed out. The location of each block and the class of the pin
to which the net must connect at each block is also printed. For clbs, the class is simply whatever class was specified
for that pin in the architecture input file. For pads the pinclass is always -1; since pads do not have logically-equivalent
pins, pin classes are not needed. An example listing for a global net is given below.
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Listing 5.5: Example routing for a global net.

1 Net 146 (pclk): global net connecting:
2 Block pclk (#146) at (1,0), pinclass -1
3 Block pksi_17_ (#431) at (3,26), pinclass 2
4 Block pksi_185_ (#432) at (5,48), pinclass 2
5 Block n_n2879 (#433) at (49,23), pinclass 2

5.6.8 Routing Resource Graph File Format (.xml)

The routing resource graph (rr graph) file is an XML file that describes the routing resources within the FPGA. This
file is generated through the last stage of the rr graph generation during routing with the final channel width. When
reading in rr graph from an external file, the rr graph is used during the placement and routing section of VPR. The file
is constructed using tags. The top level is the rr_graph tag. This tag contains all the channel, switches, segments,
block, grid, node, and edge information of the FPGA. It is important to keep all the values as high precision as possible.
Sensitive values include capacitance and Tdel. As default, these values are printed out with a precision of 30 digits.
Each of these sections are separated into separate tags as described below.

Note: Use vpr --read_rr_graph to specify an RR graph file to be load.

Note: Use vpr --write_rr_graph to specify where the RR graph should be written.

Top Level Tags

The first tag in all rr graph files is the <rr_graph> tag that contains detailed subtags for each catagory in the rr
graph. Each tag has their subsequent subtags that describes one entity. For example, <segments> includes all the
segments in the graph where each <segment> tag outlines one type of segment.

The rr_graph tag contains the following tags:

• <channels>

– <channel>``content``</channel>

• <switches>

– <switch>``content``</switch>

• <segments>

– <segment>``content``</segment>

• <block_types>

– <block_type>``content``</block_type>

• <grid>

– <grid_loc>``content``</grid_loc>

• <rr_nodes>

– <node>``content``</node>

• <rr_edges>
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– <edge>``content``</edge>

Note: The rr graph is based on the architecture, so more detailed description of each section of the rr graph can be
found at FPGA architecture description

Detailed Tag Information

Channel

The channel information is contained within the channels subtag. This describes the minimum and maximum
channel width within the architecture. Each channels tag has the following subtags:

<channel chan_width_max="int" x_min="int" y_min="int" x_max="int" y_max="int"/>
This is a required subtag that contains information about the general channel width information. This stores the
channel width between x or y directed channels.

Required Attributes

• chan_width_max – Stores the maximum channel width value of x or y channels.

• x_min y_min x_max y_max – Stores the minimum and maximum value of x and
y coordinate within the lists.

<x_list index="int" info="int"/> <y_list index="int" info="int"/>
These are a required subtags that lists the contents of an x_list and y_list array which stores the
width of each channel. The x_list array size as large as the size of the y dimension of the FPGA
itself while the y_list has the size of the x_dimension. This x_list tag is repeated for each index
within the array.

Required Attributes

• index – Describes the index within the array.

• info – The width of each channel. The minimum is one track per channel. The
input and output channels are io_rat * maximum in interior tracks wide. The channel
distributions read from the architecture file are scaled by a constant factor.

Switches

A switches tag contains all the switches and its information within the FPGA. It should be noted that for values
such as capacitance, Tdel, and sizing info all have high precision. This ensures a more accurate calculation when
reading in the routing resource graph. Each switch tag has a switch subtag.

<switch id="int" name="unique_identifier" type="{mux|tristate|pass_gate|short|buffer}">
Required Attributes

• id – A unique identifier for that type of switch.

• name – An optional general identifier for the switch.

• type – See architecture switch description.

<timing R="float" cin="float" Cout="float" Tdel="float/>
This optional subtag contains information used for timing analysis. Without it, the program assums
all subtags to contain a value of 0.

Optional Attributes
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• R, Cin, Cout – The resistance, input capacitance and output capacitance of the
switch.

• Tdel – Switch’s intrinsic delay. It can be outlined that the delay through an unloaded
switch is Tdel + R * Cout.

<sizing mux_trans_size="int" buf_size="float"/>
The sizing information contains all the information needed for area calculation.

Required Attributes

• mux_trans_size – The area of each transistor in the segment’s driving mux. This
is measured in minimum width transistor units.

• buf_size – The area of the buffer. If this is set to zero, the area is calculated from the
resistance.

Segments

The segments tag contains all the segments and its information. Note again that the capacitance has a high decimal
precision. Each segment is then enclosed in its own segment tag.

<segment id="int" name="unique_identifier">
Required Attributes

• id – The index of this segment.

• name – The name of this segment.

<timing R_per_meter="float" C_per_meter="float">
This optional tag defines the timing information of this segment.

Optional Attributes

• R_per_meter, C_per_meter – The resistance and capacitance of a routing track,
per unit logic block length.

Blocks

The block_types tag outlines the information of a placeable complex logic block. This includes generation, pin
classes, and pins within each block. Information here is checked to make sure it corresponds with the architecture. It
contains the following subtags:

<block_type id="int" name="unique_identifier" width="int" height="int">
This describes generation information about the block using the following attributes:

Required Attributes

• id – The index of the type of the descriptor in the array. This is used for index refer-
encing

• name – A unique identifier for this type of block. Note that an empty block type must be
denoted "EMPTY" without the brackets <> to prevent breaking the xml format. Input
and output blocks must be named “io”. Other blocks can have any name.

• width, height – The width and height of a large block in grid tiles.

<pin_class type="pin_type">
This optional subtag of block_type describes groups of pins in configurable logic blocks that
share common properties.
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Required Attributes

• type – This describes whether the pin class is a driver or receiver. Valid inputs are
OPEN, OUTPUT, and INPUT.

<pin ptc="block_pin_index">name</pin>
This required subtag of pin_class describes its pins.

Required Attributes

• ptc – The index of the pin within the block_type.

• name – Human readable pin name.

Grid

The grid tag contains information about the grid of the FPGA. Information here is checked to make sure it corre-
sponds with the architecture. Each grid tag has one subtag as outlined below:

<grid_loc x="int" y="int" block_type_id="int" width_offset="int" height_offset="int">
Required Attributes

• x, y – The x and y coordinate location of this grid tile.

• block_type_id – The index of the type of logic block that resides here.

• width_offset, height_offset – The number of grid tiles reserved based on
the width and height of a block.

Nodes

The rr_nodes tag stores information about each node for the routing resource graph. These nodes describe each
wire and each logic block pin as represented by nodes.

<node id="int" type="unique_type" direction="unique_direction" capacity="int">
Required Attributes

• id – The index of the particular routing resource node

• type – Indicates whether the node is a wire or a logic block. Valid inputs for class
types are { CHANX | CHANY | SOURCE | SINK | OPIN | IPIN }. Where CHANX and
CHANY describe a horizontal and vertical channel. Sources and sinks describes where
nets begin and end. OPIN represents an output pin and IPIN representd an input pin

• capacity – The number of routes that can use this node.

Optional Attributes

• direction – If the node represents a track (CHANX or CHANY), this field represents
its direction as {INC_DIR | DEC_DIR | BI_DIR}. In other cases this attribute should
not be specified.

<loc xlow="int" ylow="int" xhigh="int" yhigh="int" side="{LEFT|RIGHT|TOP|BOTTOM}" ptc="int">
Contains location information for this node. For pins or segments of length one, xlow = xhigh and ylow = yhigh.

Required Attributes

• xlow, xhigh, ylow, yhigh – Integer coordinates of the ends of this routing
source.

• ptc – This is the pin, track, or class number that depends on the rr_node type.
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Optional Attributes

• side – For IPIN and OPIN nodes specifies the side of the grid tile on which the node
is located. Valid values are { LEFT | RIGHT | TOP | BOTTOM }. In other cases this
attribute should not be specified.

<timing R="float" C="float">
This optional subtag contains information used for timing analysis

Required Attributes

• R – The resistance that goes through this node. This is only the metal resistance, it does
not include the resistance of the switch that leads to another routing resource node.

• C – The total capacitance of this node. This includes the metal capacitance, input capac-
itance of all the switches hanging off the node, the output capacitance of all the switches
to the node, and the connection box buffer capacitances that hangs off it.

<segment segment_id="int">
This optional subtag describes the information of the segment that connects to the node.

Required Attributes

• segment_id – This describes the index of the segment type. This value only applies
to horizontal and vertical channel types. It can be left empty, or as -1 for other types of
nodes.

Edges

The final subtag is the rr_edges tag that encloses information about all the edges between nodes. Each rr_edges
tag contains multiple subtags:

<edge src_node="int" sink_node="int" switch_id="int"/>
This subtag repeats every edge that connects nodes together in the graph.

Required Attributes

• src_node, sink_node – The index for the source and sink node that this edge
connects to.

• switch_id – The type of switch that connects the two nodes.

Node and Edge Metadata

metadata blocks (see Architecture metadata) are supported under both node and edge tags.

Routing Resource Graph Format Example

An example of what a generated routing resource graph file would look like is shown below:

Listing 5.6: Example of a routing resource graph in XML format

1 <rr_graph tool_name="vpr" tool_version="82a3c72" tool_comment="Based on my_arch.xml">
2 <channels>
3 <channel chan_width_max="2" x_min="2" y_min="2" x_max="2" y_max="2"/>
4 <x_list index="1" info="5"/>
5 <x_list index="2" info="5"/>
6 <y_list index="1" info="5"/>

(continues on next page)
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(continued from previous page)

7 <y_list index="2" info="5"/>
8 </channels>
9 <switches>

10 <switch id="0" name="my_switch" buffered="1">
11 <timing R="100" Cin="1233-12" Cout="123e-12" Tdel="1e-9"/>
12 <sizing mux_trans_size="2.32" buf_size="23.54"/>
13 </switch>
14 </switches>
15 <segments>
16 <segment id="0" name="L4">
17 <timing R_per_meter="201.7" C_per_meter="18.110e-15"/>
18 </segment>
19 </segments>
20 <block_types>
21 <block_type id="0" name="io" width="1" height="1">
22 <pin_class type="input">
23 <pin ptc="0">DATIN[0]</pin>
24 <pin ptc="1">DATIN[1]</pin>
25 <pin ptc="2">DATIN[2]</pin>
26 <pin ptc="3">DATIN[3]</pin>
27 </pin_class>
28 <pin_class type="output">
29 <pin ptc="4">DATOUT[0]</pin>
30 <pin ptc="5">DATOUT[1]</pin>
31 <pin ptc="6">DATOUT[2]</pin>
32 <pin ptc="7">DATOUT[3]</pin>
33 </pin_class>
34 </block_type>
35 <block_type id="1" name="buf" width="1" height="1">
36 <pin_class type="input">
37 <pin ptc="0">IN</pin>
38 </pin_class>
39 <pin_class type="output">
40 <pin ptc="1">OUT</pin>
41 </pin_class>
42 </block_type>
43 </block_types>
44 <grid>
45 <grid_loc x="0" y="0" block_type_id="0" width_offset="0" height_offset="0"/>
46 <grid_loc x="1" y="0" block_type_id="1" width_offset="0" height_offset="0"/>
47 </grid>
48 <rr_nodes>
49 <node id="0" type="SOURCE" direction="NONE" capacity="1">
50 <loc xlow="0" ylow="0" xhigh="0" yhigh="0" ptc="0"/>
51 <timing R="0" C="0"/>
52 </node>
53 <node id="1" type="CHANX" direction="INC" capacity="1">
54 <loc xlow="0" ylow="0" xhigh="2" yhigh="0" ptc="0"/>
55 <timing R="100" C="12e-12"/>
56 <segment segment_id="0"/>
57 </node>
58 </rr_nodes>
59 <rr_edges>
60 <edge src_node="0" sink_node="1" switch_id="0"/>
61 <edge src_node="1" sink_node="2" switch_id="0"/>
62 </rr_edges>
63 </rr_graph>

192 Chapter 5. VPR



Verilog-to-Routing Documentation, Release 8.1.0-dev

5.7 Debugging Aids

Note: This section is most relevant to developers modifying VPR

The report_timing.setup.rpt file lists details about the critical path of a circuit, and is very useful for deter-
mining why your circuit is so fast or so slow.

To access detailed echo files from VPR’s operation, use the command-line option --echo_file on. After parsing
the netlist and architecture files, VPR dumps out an image of its internal data structures into echo files (typically ending
in .echo). These files can be examined to be sure that VPR is parsing the input files as you expect.

If the preprocessor flag DEBUG is defined in vpr_types.h, some additional sanity checks are performed during a
run. DEBUG only slows execution by 1 to 2%. The major sanity checks are always enabled, regardless of the state of
DEBUG. Finally, if VERBOSE is set in vpr_types.h, a great deal of intermediate data will be printed to the screen as
VPR runs. If you set verbose, you may want to redirect screen output to a file.

The initial and final placement costs provide useful numbers for regression testing the netlist parsers and the placer,
respectively. VPR generates and prints out a routing serial number to allow easy regression testing of the router.

Finally, if you need to route an FPGA whose routing architecture cannot be described in VPR’s architecture description
file, don’t despair! The router, graphics, sanity checker, and statistics routines all work only with a graph that defines
all the available routing resources in the FPGA and the permissible connections between them. If you change the
routines that build this graph (in rr_graph*.c) so that they create a graph describing your FPGA, you should
be able to route your FPGA. If you want to read a text file describing the entire routing resource graph, call the
dump_rr_graph subroutine.
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CHAPTER

SIX

ODIN II

Odin II is used for logic synthesis and elaboration, converting a subset of the Verilog Hardware Description Language
(HDL) into a BLIF netlist.

See also:

[JKGS10]

6.1 INSTALL

6.1.1 Prerequisites

1. ctags

2. bison

3. flex

4. gcc 5.x

5. cmake 2.8.12 (minimum version)

6. time

7. cairo

6.1.2 Build

To build you may use the Makefile wrapper in the ODIN_ROOT make build To build with debug symbols you
may use the Makefile wrapper in the ODIN_ROOT make debug

Note: ODIN uses CMake as it’s build system. CMake provides a protable cross-platform build systems with many
useful features. For unix-like systems we provide a wrapper Makefile which supports the traditional make and make
clean commands, but calls CMake behind the scenes.

Warning: After you build Odin, please run from the ODIN_ROOT make test

This will simulate, and verify all of the included microbenchmark circuits to ensure that Odin is working correctly on
your system.
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6.2 USAGE

./odin_II [args]

6.2.1 Required [args]

-c <XML Configuration File> fpga_architecture_file.xml format is specified from VPR
-V <Verilog HDL File> You may specify multiple verilog HDL files for synthesis
-b <BLIF File>

6.2.2 Optional [args]

-o <output file> full output path and file name for the blif output file
-a <architecture file> an FPGA architecture file in VPR format to map to
-G Output netlist graph in GraphViz viewable .dot format. (net.dot, opens with dotty)
-A Output AST graph in in GraphViz viewable .dot format.
-W Print all warnings. (Can be substantial.)
-h Print help

6.2.3 Simulation

Note: Simulation always produces files:

• input_vectors

• output_vectors

• test.do (ModelSim)

Activate Simulation with [args]

-g <Number
of ran-
dom test
vectors>

will simulate the generated netlist with the entered number of clock cycles using pseudo-
random test vectors. These vectors and the resulting output vectors are written to “in-
put_vectors” and “output_vectors” respectively. You can supply a predefined input vector
using -t

-L <Comma-
separated
list>

Comma-separated list of primary inputs to hold high at cycle 0, and low for all subsequent
cycles.

-3 Generate three valued logic. (Default is binary.)
-t <input vec-

tor file>
Supply a predefined input vector file

-U0 initial register value to 0
-U1 initial register value to 1
-UX initial register value to X(unknown) (DEFAULT)
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Simulation Optional [args]

-T <output vector file> The output vectors is verified against the supplied predefined output vector file
-E Output after both edges of the clock. (Default is to output only after the falling

edge.)
-R Output after rising edge of the clock only. (Default is to output only after the falling

edge.)
-p <Comma-separated

list>
Comma-separated list of additional pins/nodes to monitor during simulation. (view
NOTES)

6.2.4 NOTES

Example for -p:

-p input~0,input~1 monitors pin 0 and 1 of input
-p input monitors all pins of input as a single port
-p input~ monitors all pins of input as separate ports. (split)

Note: Matching for -p is done via strstr so general strings will match all similar pins and nodes. (Eg: FF_NODE
will create a single port with all flipflops)

Examples .xml configuration file for -c

<config>
<verilog_files>

<!-- Way of specifying multiple files in a project! -->
<verilog_file>verilog_file.v</verilog_file>

</verilog_files>
<output>

<!-- These are the output flags for the project -->
<output_type>blif</output_type>
<output_path_and_name>./output_file.blif</output_path_and_name>
<target>

<!-- This is the target device the output is being built for -
→˓->

<arch_file>fpga_architecture_file.xml</arch_file>
</target>

</output>
<optimizations>

<!-- This is where the optimization flags go -->
</optimizations>
<debug_outputs>

<!-- Various debug options -->
<debug_output_path>.</debug_output_path>
<output_ast_graphs>1</output_ast_graphs>
<output_netlist_graphs>1</output_netlist_graphs>

</debug_outputs>
</config>
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Note: Hard blocks can be simulated; given a hardblock named block in the architecture file with an instance of it
named instance in the verilog file, write a C method with signature defined in SRC/sim_block.h and compile
it with an output filename of block+instance.so in the directory you plan to invoke Odin_II from.

When compiling the file, you’ll need to specify the following arguments to the compiler (assuming that you’re in the
SANBOX directory):

cc -I../../libarchfpga_6/include/ -L../../libarchfpga_6 -lvpr_6 -lm --shared
-o block+instance.so block.c.

If the netlist generated by Odin II contains the definition of a hardblock which doesn’t have a shared object file defined
for it in the working directory, Odin II will not work if you specify it to use the simulator with the -g or -t options.

Warning: Use of static memory within the simulation code necessitates compiling a distinct shared object file
for each instance of the block you wish to simulate. The method signature the simulator expects contains only
int and int[] parameters, leaving the code provided to simulate the hard blokc agnostic of the internal Odin II
data structures. However, a cycle parameter is included to provide researchers with the ability to delay results of
operations performed by the simulation code.

Examples vector file for -t or -T

# Example vector file
intput_1 input_2 output_1 output_2 output_3
# Comment
0 0XA 1 0XD 1101

Note: Each line represents a vector. Each value must be specified in binary or hex. Comments may be included by
placing an # at the start of the line. Blank lines are ignored. Values may be separated by non-newline whitespace.
(tabs and spaces) Hex values must be prefixed with 0X.

Each line in the vector file represents one cycle, or one falling edge and one rising edge. Input vectors are read on a
falling edge, while output vectors are written on a rising edge.

Verilog Synthesizable Keyword Support:

Supported Keyword NOT Sup. Keyword Supported Operators NOT Sup. Operators
@() automatic !=
@* deassign !==
`define disable == >>>
always edge ===
and endtask =>
assign forever **
case task ^~
defparam repeat <<<
end signed >=
endfunction task ||
endmodule generate ~&

continues on next page
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Table 6.1 – continued from previous page
begin genvar &&
default <<
else <=
endcase >>
endspecify ~^
for ~|
function $clog()
if -:
inout +:
input
integer
localparam
module
nand
negedge
nor
not
or
output
parameter
posedge
reg
specify
while
wire
xnor
xor
macromodule

Verilog Syntax support:

inline port declaration in the module declaration i.e:

module a(input clk)
...
endmodule
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Verilog NON-Synthesizable Keyword Support:

Supported Keyword NOT Sup. Keyword Supported Operators NOT Sup. Operators
initial casex &&&
specparam casez

endprimitive
endtable
event
force
fork
join
primitive
release
table
time
wait

Verilog Gate Level Modeling Support:

Supported Keyword NOT Sup. Keyword
buf
bufif0
bufif1
cmos
highz0
highz0
highz1
highz1
large
medium
nmos
notif0
notif1
pmos
pull0
pull1
pulldown
pullup
rcmos
rnmos
rpmos
rtran
rtranif0
rtranif1
scalared
small
strong0
strong0
strong1

continues on next page
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Table 6.2 – continued from previous page
strong1
supply0
supply1
tran
tranif0
tranif1
tri
tri0
tri1
triand
trior
vectored
wand
weak0
weak0
weak1
weak1
wor

6.3 DOCUMENTING ODIN II

Any new command line options added to Odin II should be fully documented by the print_usage() function within
odin_ii.c before checking in the changes.

6.4 TESTING ODIN II

The verify_odin.sh scripts simulate the microbenchmarks and a larger set of benchmark circuits. These scripts use
simulation results which have been verified against ModelSim.

After you build Odin II, run verify_odin.sh to ensure that everything is working correctly on your system. Unlike the
verify_regression_tests.sh script, verify_odin.sh also simulates the blif output, as well as simulating the verilog with
and without the architecture file.

Before checking in any changes to Odin II, please run both of these scripts to ensure that both of these scripts execute
correctly. If there is a failure, use ModelSim to verify that the failure is within Odin II and not a faulty regression test.
The Odin II simulator will produce a test.do file containing clock and input vector information for ModelSim.

When additional circuits are found to agree with ModelSim, they should be added to these test sets. When new features
are added to Odin II, new microbenchmarks should be developed which test those features for regression. Use existing
circuits as a template for the addition of new circuits.
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6.5 USING MODELSIM TO TEST ODIN II

ModelSim may be installed as part of the Quartus II Web Edition IDE. Load the Verilog circuit into a new project in
ModelSim. Compile the circuit, and load the resulting library for simulation.

You may use random vectors via the -g option, or specify your own input vectors using the -t option. When simulation
is complete, load the resulting test.do file into your ModelSim project and execute it. You may now directly compare
the vectors in the output_vectors file with those produced by ModelSim.

To add the verified vectors and circuit to an existing test set, move the verilog file (eg: test_circuit.v) to the test set
folder. Next, move the input_vectors file to the test set folder, and rename it test_circuit_input. Finally, move the
output_vectors file to the test set folder and rename it test_circuit_output.

6.6 CONTACT

jamieson dot peter at gmail dot com ken at unb dot ca - We will service all requests as timely as possible, but please
explain the problem with enough detail to help.
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CHAPTER

SEVEN

ABC

ABC is included with in VTR to perform technology independant logic optimization and technology mapping.

ABC is developed at UC Berkeley, see the ABC homepage for details.
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CHAPTER

EIGHT

TUTORIALS

8.1 Design Flow Tutorials

These tutorials describe how to run the VTR design flow.

8.1.1 Basic Design Flow Tutorial

The following steps show you to run the VTR design flow to map a sample circuit to an FPGA architecture containing
embedded memories and multipliers:

1. From the $VTR_ROOT , move to the vtr_flow/tasks directory, and run:

../scripts/run_vtr_task.pl basic_flow

This command will run the VTR flow on a single circuit and a single architecture. The files generated from
the run are stored in basic_flow/run[#] where [#] is the number of runs you have done. If this is your
first time running the flow, the results will be stored in basic_flow/run001. When the script completes, enter the
following command:

../scripts/parse_vtr_task.pl basic_flow/

This parses out the information of the VTR run and outputs the results in a text file called run[#]/
parse_results.txt.

More info on how to run the flow on multiple circuits and architectures along with different options later. Before
that, we need to ensure that the run that you have done works.

2. The basic_flow comes with golden results that you can use to check for correctness. To do this check, enter the
following command:

../scripts/parse_vtr_task.pl -check_golden basic_flow

It should return: basic_flow...[Pass]

Note: Due to the nature of the algorithms employed, the measurements that you get may not match exactly with
the golden measurements. We included margins in our scripts to account for that noise during the check. We
also included runtime estimates based on our machine. The actual runtimes that you get may differ dramatically
from these values.

3. To see precisely which circuits, architecture, and CAD flow was employed by the run, look at vtr_flow/
tasks/basic_flow/config/config.txt. Inside this directory, the config.txt file contains the
circuits and architecture file employed in the run.
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Some also contain a golden_results.txt file that is used by the scripts to check for correctness.

The vtr_release/vtr_flow/scripts/run_vtr_flow.pl script describes the CAD flow employed
in the test. You can modify the flow by editing this script.

At this point, feel free to run any of the tasks pre-pended with “regression”. These are regression tests included
with the flow that test various combinations of flows, architectures, and benchmarks.

4. For more information on how the vtr_flow infrastructure works (and how to add the tests that you want to do to
this infrastructure) see Tasks.

8.2 Architecture Modeling

This page provides information on the FPGA architecture description language used by VPR. This page is geared
towards both new and experienced users of vpr.

New users may wish to consult the conference paper that introduces the language [LAR11]. This paper describes
the motivation behind this new language as well as a short tutorial on how to use the language to describe different
complex blocks of an FPGA.

New and experienced users alike should consult the detailed Architecture Reference which serves to documents every
property of the language.

Multiple examples of how this language can be used to describe different types of complex blocks are provided as
follows:

Complete Architecture Description Walkthrough Examples:

8.2.1 Classic Soft Logic Block Tutorial

The following is an example on how to use the VPR architecture description langauge to describe a classical academic
soft logic block. First we provide a step-by-step explanation on how to construct the logic block. Afterwards, we
present the complete code for the logic block.

Fig. 8.1: Model of a classic FPGA soft logic cluster

Fig. 8.1 shows an example of a classical soft logic block found in academic FPGA literature. This block consists of
N Basic Logic Elements (BLEs). The BLE inputs can come from either the inputs to the logic block or from other
BLEs within the logic block via a full crossbar. The logic block in this figure has I general inputs, one clock input, and
N outputs (where each output corresponds to a BLE). A BLE can implement three configurations: a K-input look-up
table (K-LUT), a flip-flop, or a K-LUT followed by a flip-flop. The structure of a classical soft logic block results in
a property known as logical equivalence for certain groupings of input/output pins. Logically equivalent pins means
that connections to those pins can be swapped without changing functionality. For example, the input to AND gates
are logically equivalent while the inputs to a 4-bit adders are not logically equivalent. In the case of a classical soft
logic block, all input pins are logically equivalent (due to the fully populated crossbar) and all output pins are logically
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equivalent (because one can swap any two BLEs without changing functionality). Logical equivalence is important
because it enables the CAD tools to make optimizations especially during routing. We describe a classical soft logic
block with N = 10, I = 22, and K = 4 below.

First, a complex block pb_type called CLB is declared with appropriate input, output and clock ports. Logical equiv-
alence is labelled at ports where it applies:

<pb_type name="clb">
<input name="I" num_pins="22" equivalent="full"/>
<output name="O" num_pins="10" equivalent="instance"/>
<clock name="clk" equivalent="false"/>

A CLB contains 10 BLEs. Each BLE has 4 inputs, one output, and one clock. A BLE block and its inputs and outputs
are specified as follows:

<pb_type name="ble" num_pb="10">
<input name="in" num_pins="4"/>
<output name="out" num_pins="1"/>
<clock name="clk"/>

A BLE consists of one LUT and one flip-flop (FF). Both of these are primitives. Recall that primitive physical blocks
must have a blif_model attribute that matches with the model name in the BLIF input netlist. For the LUT, the model
is .names in BLIF. For the FF, the model is .latch in BLIF. The class construct denotes that these are special
(common) primitives. The primitives contained in the BLE are specified as:

<pb_type name="lut_4" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="4" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>

</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>

Fig. 8.2 shows the ports of the BLE with the input and output pin sets. The inputs to the LUT and flip-flop are direct
connections. The multiplexer allows the BLE output to be either the LUT output or the flip-flop output. The code to
specify the interconnect is:

Fig. 8.2: Internal BLE names

<interconnect>
<direct input="lut_4.out" output="ff.D"/>
<direct input="ble.in" output="lut_4.in"/>
<mux input="ff.Q lut_4.out" output="ble.out"/>
<direct input="ble.clk" output="ff.clk"/>

</interconnect>
</pb_type>

The CLB interconnect is then modeled (see Fig. 8.1). The inputs to the 10 BLEs (ble[9:0].in) can be connected to
any of the CLB inputs (clb.I) or any of the BLE outputs (ble[9:0].out) by using a full crossbar. The clock of the
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CLB is wired to multiple BLE clocks, and is modeled as a full crossbar. The outputs of the BLEs have direct wired
connections to the outputs of the CLB and this is specified using one direct tag. The CLB interconnect specification
is:

<interconnect>
<complete input="{clb.I ble[9:0].out}" output="ble[9:0].in"/>
<complete input="clb.clk" output="ble[9:0].clk"/>
<direct input="ble[9:0].out" output="clb.O"/>

</interconnect>

Finally, we model the connectivity between the CLB and the general FPGA fabric (recall that a CLB communicates
with other CLBs and I/Os using general-purpose interconnect). The ratio of tracks that a particular input/output pin of
the CLB connects to is defined by fc_in/fc_out. In this example, a fc_in of 0.15 means that each input pin connects
to 15% of the available routing tracks in the external-to-CLB routing channel adjacent to that pin. The pinlocations
tag is used to associate pins on the CLB with which side of the logic block pins reside on where the pattern spread
corresponds to evenly spreading out the pins on all sides of the CLB in a round-robin fashion. In this example, the
CLB has a total of 33 pins (22 input pins, 10 output pins, 1 clock pin) so 8 pins are assigned to all sides of the CLB
except one side which gets assigned 9 pins. The columns occupied by complex blocks of type CLB is defined by
gridlocations where fill means that all columns should be type CLB unless that column is taken up by a block with
higher priority (where a larger number means a higher priority).

<!-- Describe complex block relation with FPGA -->

<fc_in type="frac">0.150000</fc_in>
<fc_out type="frac">0.125000</fc_out>

<pinlocations pattern="spread"/>
<gridlocations>
<loc type="fill" priority="1"/>

</gridlocations>
</pb_type>

Classic Soft Logic Block Complete Example

<!--
Example of a classical FPGA soft logic block with
N = 10, K = 4, I = 22, O = 10
BLEs consisting of a single LUT followed by a flip-flop that can be bypassed
-->

<pb_type name="clb">
<input name="I" num_pins="22" equivalent="full"/>
<output name="O" num_pins="10" equivalent="instance"/>
<clock name="clk" equivalent="false"/>

<pb_type name="ble" num_pb="10">
<input name="in" num_pins="4"/>
<output name="out" num_pins="1"/>
<clock name="clk"/>

<pb_type name="lut_4" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="4" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>

</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">

(continues on next page)
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<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>

<interconnect>
<direct input="lut_4.out" output="ff.D"/>
<direct input="ble.in" output="lut_4.in"/>
<mux input="ff.Q lut_4.out" output="ble.out"/>
<direct input="ble.clk" output="ff.clk"/>

</interconnect>
</pb_type>

<interconnect>
<complete input="{clb.I ble[9:0].out}" output="ble[9:0].in"/>
<complete input="clb.clk" output="ble[9:0].clk"/>
<direct input="ble[9:0].out" output="clb.O"/>

</interconnect>

<!-- Describe complex block relation with FPGA -->

<fc_in type="frac">0.150000</fc_in>
<fc_out type="frac">0.125000</fc_out>

<pinlocations pattern="spread"/>
<gridlocations>
<loc type="fill" priority="1"/>

</gridlocations>
</pb_type>

8.2.2 Multi-mode Logic Block Tutorial

This tutorial aims to introduce how to build a representative multi-mode logic block by exploiting VPR architecture
description language, as well as debugging tips to guarantee each mode of a logic block is functional.

Definition

Modern FPGA logic blocks are designed to operate in various modes, so as to provide best performance for different
applications. VPR offers enriched syntax to support highly flexible multi-mode logic block architecture.

Fig. 8.3 shows the physical implemenation of a Fracturable Logic Element (FLE), which consists of a fracturable
6-input Look-Up Table (LUT), two Flip-flops (FFs) and routing multiplexers to select between combinational and
sequential outputs.

The FLE in Fig. 8.3 can operate in two different modes: (a) dual 5-input LUT mode (see Fig. 8.4); and (b) single
6-input LUT mode (see Fig. 8.5). Note that each operating mode does not change the physical implementation of FLE
but uses part of the programmable resources.
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Fig. 8.3: Schematic of a fracturable logic element

Fig. 8.4: Simplified organization when the FLE in Fig. 8.3 operates in dual 5-input LUT mode

Fig. 8.5: Simplified organization when the FLE in Fig. 8.3 operates in 6-input LUT mode
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Architecture Description

To accurately model the operating modes of the FLE, we will use the syntax <pb_type> and <mode> in architecture
description language.

<!-- Multi-mode Fracturable Logic Element definition begin -->
<pb_type name="fle" num_pb="10">
<input name="in" num_pins="6"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>

<!-- Dual 5-input LUT mode definition begin -->
<mode name="n2_lut5">
<!-- Detailed definition of the dual 5-input LUT mode -->

</mode>
<!-- Dual 5-input LUT mode definition end -->

<!-- 6-input LUT mode definition begin -->
<mode name="n1_lut6">
<!-- Detailed definition of the 6-input LUT mode -->

</mode>
<!-- 6-input LUT mode definition end -->

</pb_type>

In the above XML codes, we define a <pb_type> for the FLE by following the port organization in Fig. 8.3. Under
the <pb_type>, we create two modes, n2_lut5 and n1_lut6, corresponding to the two operating modes as
shown in Fig. 8.4 and Fig. 8.5. Note that we focus on operating modes here, which are sufficient to perform architecture
evaluation.

Under the dual 5-input LUT mode, we can define <pb_type> and <interconnect> to model the schematic in
Fig. 8.4.

<!-- Dual 5-input LUT mode definition begin -->
<mode name="n2_lut5">

<pb_type name="lut5inter" num_pb="1">
<input name="in" num_pins="5"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<!-- Define two LUT5 + FF pairs (num_pb=2) corresponding to :numref:`fig_frac_lut_

→˓le_dual_lut5_mode` -->
<pb_type name="ble5" num_pb="2">

<input name="in" num_pins="5"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define the LUT -->
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="5" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR

→˓cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable

→˓results
82e-12
173e-12
261e-12
263e-12
398e-12

(continues on next page)
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-->
<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
235e-12
235e-12
235e-12
235e-12
235e-12

</delay_matrix>
</pb_type>
<!-- Define the flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>

</pb_type>
<interconnect>

<direct name="direct1" input="ble5.in[4:0]" output="lut5[0:0].in[4:0]"/>
<direct name="direct2" input="lut5[0:0].out" output="ff[0:0].D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in

→˓netlist -->
<pack_pattern name="ble5" in_port="lut5[0:0].out" out_port="ff[0:0].D"/>

</direct>
<direct name="direct3" input="ble5.clk" output="ff[0:0].clk"/>
<mux name="mux1" input="ff[0:0].Q lut5.out[0:0]" output="ble5.out[0:0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut5.out[0:0]" out_port="ble5.out[0:0]

→˓"/>
<delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="ble5.out[0:0]"/>

</mux>
</interconnect>

</pb_type>
<interconnect>

<direct name="direct1" input="lut5inter.in" output="ble5[0:0].in"/>
<direct name="direct2" input="lut5inter.in" output="ble5[1:1].in"/>
<direct name="direct3" input="ble5[1:0].out" output="lut5inter.out"/>
<complete name="complete1" input="lut5inter.clk" output="ble5[1:0].clk"/>

</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[4:0]" output="lut5inter.in"/>
<direct name="direct2" input="lut5inter.out" output="fle.out"/>
<direct name="direct3" input="fle.clk" output="lut5inter.clk"/>

</interconnect>
</mode>
<!-- Dual 5-input LUT mode definition end -->

Under the 6-input LUT mode, we can define <pb_type> and <interconnect> to model the schematic in Fig.
8.5.

<!-- 6-LUT mode definition begin -->
<mode name="n1_lut6" disable_packing="false">

<!-- Define 6-LUT mode, consisting of a LUT6 + FF pair (num_pb=1) corresponding to
→˓:numref:`fig_frac_lut_le_lut6_mode`-->
<pb_type name="ble6" num_pb="1">

(continues on next page)
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<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define LUT -->
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="6" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR

→˓cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable results

82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->

<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
261e-12
261e-12
261e-12
261e-12
261e-12
261e-12

</delay_matrix>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>

</pb_type>
<interconnect>

<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
<direct name="direct2" input="lut6.out" output="ff.D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist

→˓-->
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>

</direct>
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">

<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>

</mux>
</interconnect>

</pb_type>
<interconnect>
<!--direct name="direct1" input="fle.in" output="ble6.in"/-->
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble6.clk"/>

</interconnect>
</mode>
<!-- 6-LUT mode definition end -->
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Full example can be found at link.

Validation in packer

After finishing the architecture description, the next step is to validate that VPR can map logic to each operating mode.
Since VPR packer will exhaustively try each operating mode and finally map logic to one of it. As long as there is an
operating mode that is feasible for mapping, VPR will complete packing without errors. However, this may shadow
the problems for other operating modes. It is entirely possible that an operating mode is not defined correctly and is
always dropped by VPR during packing. Therefore, it is necessary to validate the correctness of each operating mode.
To efficiently reach the goal, we will temporarily apply the syntax disable_packing to specific modes, so as to
narrow down the search space.

First, we can disable the dual 5-input LUT mode for packer, by changing

<mode name="n2_lut5">

to

<mode name="n2_lut5" disable_packing="true">

As a result, VPR packer will only consider the 6-input LUT mode during packing. We can try a benchmark
mult_2x2.blif by following the design flow tutorial Basic Design Flow Tutorial. If the flow-run succeed, it means
that the 6-input LUT mode is being successfully used by the packer.

Then, we can enable the dual 5-input LUT mode for packer, and disable the 6-input LUT mode, by changing

<mode name="n2_lut5" disable_packing="true">

<mode name="n1_lut6">

to

<mode name="n2_lut5">

<mode name="n1_lut6" disable_packing="true">

In this case, VPR packer will consider the dual 5-input LUT mode during packing. We can again try the same
benchmark mult_2x2.blif by following the design flow tutorial Basic Design Flow Tutorial. If the flow-run succeed, it
means that the dual 5-input LUT mode is being successfully used by the packer.

Finally, after having validated that both operating modes are being successfully used by the packer, we can re-enable
both operating modes by changing to

<mode name="n2_lut5">
<mode name="n1_lut6">

Now, VPR packer will try to choose the best operating mode to use.
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Tips for Debugging

When packing fails on a multi-mode logic block, the following procedures are recommended to quickly spot the bugs.

• Apply disable_packing to all the modes, except the one you suspect to be problematic. In the example of
this tutorial, you may disable the packing for mode n2_lut5 and focus on debugging mode n1_lut6.

<mode name="n2_lut5" disable_packing="true">
<mode name="n1_lut6" disable_packing="false">

• Turn on verbose output of packer --pack_verbosity (see details in Packing Options. Recommend to use
a higher verbosity number than the default value, e.g., 5. Consider the example blif and architecture in this
tutorial, you may execute vpr with

vpr k6_frac_N10_40nm.xml mult_2x2.blif --pack_verbosity 5

• Packer will show detailed information about why it fails. For example:

FAILED Detailed Routing Legality
Placed atom 'p3' (.names) at clb[0][default]/fle[4][n1_lut6]/ble6[0][default]/
→˓lut6[0][lut6]/lut[0]
(921:cluster-external source (LB_SOURCE)-->1:'clb[0].I[1]') (1:'clb[0].I[1]'-->62:
→˓'fle[0].in[1]') (62:'fle[0].in[1]'-->123:'ble6[0].in[1]') (123:'ble6[0].in[1]'--
→˓>131:'lut6[0].in[1]') (131:'lut6[0].in[1]'-->138:'lut[0].in[1]') (138:'lut[0].
→˓in[1]'-->930:cluster-internal sink (LB_SINK accessible via architecture pins:
→˓clb[0]/fle[0]/ble6[0]/lut6[0]/lut[0].in[0], clb[0]/fle[0]/ble6[0]/lut6[0]/
→˓lut[0].in[1], clb[0]/fle[0]/ble6[0]/lut6[0]/lut[0].in[2], clb[0]/fle[0]/ble6[0]/
→˓lut6[0]/lut[0].in[3], clb[0]/fle[0]/ble6[0]/lut6[0]/lut[0].in[4], clb[0]/fle[0]/
→˓ble6[0]/lut6[0]/lut[0].in[5]))

Which indicates that input ports of <pb_type name=lut6> in the mode n1_lut6 may be dangling, and
thus leads to failures in routing stage of packing.

• You may modify the architecture description and re-run vpr until packing succeeds.

• Move on to the next mode you will debug and repeat from the first step.

The debugging tips are not only applicable to the example showed in this tutorial but rather general to any multi-mode
logic block architecture.

8.2.3 Configurable Memory Bus-Based Tutorial

Warning: The description in this tutorial is not yet supported by CAD tools due to bus-based routing.

See also:

Configurable Memory Block Example for a supported version.

Configurable memories are found in today’s commercial FPGAs for two primary reasons:

1. Memories are found in a variety of different applications including image processing, soft processors, etc and

2. Implementing memories in soft logic (LUTs and flip-flops) is very costly in terms of area.

Thus it is important for modern FPGA architects be able to describe the specific properties of the configurable memory
that they want to investigate. The following is an example on how to use the langauge to describe a configurable
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Fig. 8.6: Model of a configurable memory block

memory block. First we provide a step-by-step explanation on how to construct the memory block. Afterwards, we
present the complete code for the memory block.

Fig. 8.6 shows an example of a single-ported memory. This memory block can support multiple different width and
depth combinations (called aspect ratios). The inputs can be either registered or combinational. Similarly, the outputs
can be either registered or combinational. Also, each memory configuration has groups of pins called ports that share
common properties. Examples of these ports include address ports, data ports, write enable, and clock. In this example,
the block memory has the following three configurations: 2048x1, 1024x2, and 512x4, which will be modeled using
modes. We begin by declaring the reconfigurable block RAM along with its I/O as follows:

<pb_type name="block_RAM">
<input name="addr" num_pins="11" equivalent="false"/>
<input name="din" num_pins="4" equivalent="false"/>
<input name="wen" num_pins="1" equivalent="false"/>
<output name="dout" num_pins="4" equivalent="false"/>
<clock name="clk" equivalent="false"/>

The input and output registers are defined as 2 sets of bypassable flip-flops at the I/Os of the block RAM. There are
a total of 16 inputs that can be registered as a bus so 16 flip-flops (for the 11 address lines, 4 data lines, and 1 write
enable), named ff_reg_in, must be declared. There are 4 output bits that can also be registered, so 4 flip-flops
(named ff_reg_out) are declared:

<pb_type name="ff_reg_in" blif_model=".latch" num_pb="16" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>
<pb_type name="ff_reg_out" blif_model=".latch" num_pb="4" class="flipflop">

<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>

Each aspect ratio of the memory is declared as a mode within the memory physical block type as shown below. Also,
observe that since memories are one of the special (common) primitives, they each have a class attribute:

<pb_type name="mem_reconfig" num_pb="1">
<input name="addr" num_pins="11"/>
<input name="din" num_pins="4"/>
<input name="wen" num_pins="1"/>
<output name="dout" num_pins="4"/>

(continues on next page)
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Fig. 8.7: Different modes of operation for the memory block.

(continued from previous page)

<!-- Declare a 512x4 memory type -->
<mode name="mem_512x4_mode">
<!-- Follows the same pattern as the 1024x2 memory type declared below -->

</mode>

<!-- Declare a 1024x2 memory type -->
<mode name="mem_1024x2_mode">
<pb_type name="mem_1024x2" blif_model=".subckt sp_mem" class="memory">

<input name="addr" num_pins="10" port_class="address"/>
<input name="din" num_pins="2" port_class="data_in"/>
<input name="wen" num_pins="1" port_class="write_en"/>
<output name="dout" num_pins="2" port_class="data_out"/>

</pb_type>
<interconnect>

<direct input="mem_reconfig.addr[9:0]" output="mem_1024x2.addr"/>
<direct input="mem_reconfig.din[1:0]" output="mem_1024x2.din"/>
<direct input="mem_reconfig.wen" output="mem_1024x2.wen"/>
<direct input="mem_1024x2.dout" output="mem_reconfig.dout[1:0]"/>

</interconnect>
</mode>

<!-- Declare a 2048x1 memory type -->
<mode name="mem_2048x1_mode">
<!-- Follows the same pattern as the 1024x2 memory type declared above -->

</mode>

</pb_type>

The top-level interconnect structure of the memory SPCB is shown in Fig. 8.8. The inputs of the SPCB can connect to
input registers or bypass the registers and connect to the combinational memory directly. Similarly, the outputs of the
combinational memory can either be registered or connect directly to the outputs. The description of the interconnect
is as follows:

Fig. 8.8: Interconnect within the configurable memory block.
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1 <interconnect>
2 <direct input="{block_RAM.wen block_RAM.din block_RAM.addr}" output="ff_reg_

→˓in[15:0].D"/>
3 <direct input="mem_reconfig.dout" output="ff_reg_out[3:0].D"/>
4 <mux input="mem_reconfig.dout ff_reg_out[3:0].Q" output="block_RAM.dout"/>
5 <mux input="{block_RAM.wen block_RAM.din[3:0] block_RAM.addr[10:0]} ff_reg_

→˓in[15:0].Q"
6 output="{mem_reconfig.wen mem_reconfig.din mem_reconfig.addr}"/>
7 <complete input="block_RAM.clk" output="ff_reg_in[15:0].clk"/>
8 <complete input="block_RAM.clk" output="ff_reg_out[3:0].clk"/>
9 </interconnect>

10 </pb_type>

The interconnect for the bypassable registers is complex and so we provide a more detailed explanation. First, con-
sider the input registers. Line 2 shows that the SPCB inputs drive the input flip-flops using direct wired connec-
tions. Then, in line 5, the combinational configurable memory inputs {mem_reconfig.wen mem_reconfig.
din mem_reconfig.addr} either come from the flip-flops ff_reg_in[15:0].Q or from the SPCB inputs
{block_RAM.wen block_RAM.din[3:0] block_RAM.addr[10:0]} through a 16-bit 2-to-1 bus-based
mux. Thus completing the bypassable input register interconnect. A similar scheme is used at the outputs to ensure that
either all outputs are registered or none at all. Finally, we model the relationship of the memory block with the general
FPGA fabric. The ratio of tracks that a particular input/output pin of the CLB connects to is defined by fc_in/fc_out.
The pinlocations describes which side of the logic block pins reside on where the pattern spread describes evenly
spreading out the pins on all sides of the CLB in a round-robin fashion. The columns occupied by complex blocks
of type CLB is defined by gridlocations where type="col" start="2" repeat="5" means that every fifth
column starting from the second column type memory CLB unless that column is taken up by a block with higher
priority (where a bigger number means a higher priority).

<!-- Describe complex block relation with FPGA -->

<fc_in type="frac">0.150000</fc_in>
<fc_out type="frac">0.125000</fc_out>

<pinlocations pattern="spread"/>
<gridlocations>

<loc type="col" start="2" repeat="5" priority="2"/>
</gridlocations>

Configurable Memory Bus-Based Complete Example

<pb_type name="block_RAM">
<input name="addr" num_pins="11" equivalent="false"/>
<input name="din" num_pins="4" equivalent="false"/>
<input name="wen" num_pins="1" equivalent="false"/>
<output name="dout" num_pins="4" equivalent="false"/>
<clock name="clk" equivalent="false"/>
<pb_type name="ff_reg_in" blif_model=".latch" num_pb="16" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>
<pb_type name="ff_reg_out" blif_model=".latch" num_pb="4" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

(continues on next page)
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</pb_type>

<pb_type name="mem_reconfig" num_pb="1">
<input name="addr" num_pins="11"/>
<input name="din" num_pins="4"/>
<input name="wen" num_pins="1"/>
<output name="dout" num_pins="4"/>

<!-- Declare a 2048x1 memory type -->
<mode name="mem_2048x1_mode">

<pb_type name="mem_2048x1" blif_model=".subckt sp_mem" class="memory">
<input name="addr" num_pins="11" port_class="address"/>
<input name="din" num_pins="1" port_class="data_in"/>
<input name="wen" num_pins="1" port_class="write_en"/>
<output name="dout" num_pins="1" port_class="data_out"/>

</pb_type>
<interconnect>

<direct input="mem_reconfig.addr[10:0]" output="mem_2048x1.addr"/>
<direct input="mem_reconfig.din[0]" output="mem_2048x1.din"/>
<direct input="mem_reconfig.wen" output="mem_2048x1.wen"/>
<direct input="mem_2048x1.dout" output="mem_reconfig.dout[0]"/>

</interconnect>
</mode>

<!-- Declare a 1024x2 memory type -->
<mode name="mem_1024x2_mode">

<pb_type name="mem_1024x2" blif_model=".subckt sp_mem" class="memory">
<input name="addr" num_pins="10" port_class="address"/>
<input name="din" num_pins="2" port_class="data_in"/>
<input name="wen" num_pins="1" port_class="write_en"/>
<output name="dout" num_pins="2" port_class="data_out"/>

</pb_type>
<interconnect>

<direct input="mem_reconfig.addr[9:0]" output="mem_1024x2.addr"/>
<direct input="mem_reconfig.din[1:0]" output="mem_1024x2.din"/>
<direct input="mem_reconfig.wen" output="mem_1024x2.wen"/>
<direct input="mem_1024x2.dout" output="mem_reconfig.dout[1:0]"/>

</interconnect>
</mode>

<!-- Declare a 512x4 memory type -->
<mode name="mem_512x4_mode">

<pb_type name="mem_512x4" blif_model=".subckt sp_mem" class="memory">
<input name="addr" num_pins="9" port_class="address"/>
<input name="din" num_pins="4" port_class="data_in"/>
<input name="wen" num_pins="1" port_class="write_en"/>
<output name="dout" num_pins="4" port_class="data_out"/>

</pb_type>
<interconnect>

<direct input="mem_reconfig.addr[8:0]" output="mem_512x4.addr"/>
<direct input="mem_reconfig.din[3:0]" output="mem_512x4.din"/>
<direct input="mem_reconfig.wen" output="mem_512x4.wen"/>
<direct input="mem_512x4.dout" output="mem_reconfig.dout[3:0]"/>

</interconnect>
</mode>

</pb_type>

(continues on next page)
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<interconnect>
<direct input="{block_RAM.wen block_RAM.din block_RAM.addr}" output="ff_reg_

→˓in[15:0].D"/>
<direct input="mem_reconfig.dout" output="ff_reg_out[3:0].D"/>
<mux input="mem_reconfig.dout ff_reg_out[3:0].Q" output="block_RAM.dout"/>
<mux input="{block_RAM.wen block_RAM.din[3:0] block_RAM.addr[10:0]} ff_reg_

→˓in[15:0].Q"
output="{mem_reconfig.wen mem_reconfig.din mem_reconfig.addr}"/>

<complete input="block_RAM.clk" output="ff_reg_in[15:0].clk"/>
<complete input="block_RAM.clk" output="ff_reg_out[3:0].clk"/>

</interconnect>
</pb_type>

<!-- Describe complex block relation with FPGA -->

<fc_in type="frac">0.150000</fc_in>
<fc_out type="frac">0.125000</fc_out>

<pinlocations pattern="spread"/>
<gridlocations>
<loc type="col" start="2" repeat="5" priority="2"/>

</gridlocations>

8.2.4 Fracturable Multiplier Bus-Based Tutorial

Warning: The description in this tutorial is not yet supported by CAD tools due to bus-based routing.

See also:

Fracturable Multiplier Example for a supported version.

Configurable multipliers are found in today’s commercial FPGAs for two primary reasons:

1. Multipliers are found in a variety of different applications including DSP, soft processors, scientific computing,
etc and

2. Implementing multipliers in soft logic is very area expensive.

Thus it is important for modern FPGA architects be able to describe the specific properties of the configurable mul-
tiplier that they want to investigate. The following is an example on how to use the VPR architecture description
langauge to describe a common type of configurable multiplier called a fracturable multiplier shown in Fig. 8.9. We
first give a step-by-step description on how to construct the multiplier block followed by a complete example.

Fig. 8.9: Model of a fracturable multiplier block

The large block_mult can implement one 36x36 multiplier cluster called a mult_36x36_slice or it can im-
plement two divisble 18x18 multipliers. A divisible 18x18 multiplier can implement a 18x18 multiplier cluster called
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a mult_18x18_slice or it can be fractured into two 9x9 mulitplier clusters called mult_9x9_slice. Fig. 8.10
shows a multiplier slice. Pins belonging to the same input or output port of a multiplier slice must be either all regis-
tered or none registered. Pins belonging to different ports or different slices may have different register configurations.
A multiplier primitive itself has two input ports (A and B) and one output port (OUT).

Fig. 8.10: Multiplier slice

First, we describe the block_mult complex block as follows:

<pb_type name="block_mult">
<input name="A" num_pins="36"/>
<input name="B" num_pins="36"/>
<output name="OUT" num_pins="72"/>
<clock name="clk"/>

The block_mult complex block has two modes: a mode containing a 36x36 multiplier slice and a mode containing
two fracturable 18x18 multipliers. The mode containing the 36x36 multiplier slice is described first. The mode and
slice is declared here:

<mode name="mult_36x36">
<pb_type name="mult_36x36_slice" num_pb="1">
<input name="A_cfg" num_pins="36"/>
<input name="B_cfg" num_pins="36"/>
<input name="OUT_cfg" num_pins="72"/>
<clock name="clk"/>

This is followed by a description of the primitives within the slice. There are two sets of 36 flip-flops for the input
ports and one set of 64 flip-flops for the output port. There is one 36x36 multiplier primitive. These primitives are
described by four pb_types as follows:

<pb_type name="reg_36x36_A" blif_model=".latch" num_pb="36" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>
<pb_type name="reg_36x36_B" blif_model=".latch" num_pb="36" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>
<pb_type name="reg_36x36_out" blif_model=".latch" num_pb="72" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>

<pb_type name="mult_36x36" blif_model=".subckt mult" num_pb="1">
<input name="A" num_pins="36"/>

(continues on next page)
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<input name="B" num_pins="36"/>
<output name="OUT" num_pins="72"/>

</pb_type>

The slice description finishes with a specification of the interconnection. Using the same technique as in the memory
example, bus-based multiplexers are used to register the ports. Clocks are connected using the complete tag because
there is a one-to-many relationship. Direct tags are used to make simple, one-to-one connections.

<interconnect>
<direct input="mult_36x36_slice.A_cfg" output="reg_36x36_A[35:0].D"/>
<direct input="mult_36x36_slice.B_cfg" output="reg_36x36_B[35:0].D"/>
<mux input="mult_36x36_slice.A_cfg reg_36x36_A[35:0].Q" output="mult_36x36.A"/>
<mux input="mult_36x36_slice.B_cfg reg_36x36_B[35:0].Q" output="mult_36x36.B"/>

<direct input="mult_36x36.OUT" output="reg_36x36_out[71:0].D"/>
<mux input="mult_36x36.OUT reg_36x36_out[71:0].Q" output="mult_36x36_slice.OUT_cfg

→˓"/>

<complete input="mult_36x36_slice.clk" output="reg_36x36_A[35:0].clk"/>
<complete input="mult_36x36_slice.clk" output="reg_36x36_B[35:0].clk"/>
<complete input="mult_36x36_slice.clk" output="reg_36x36_out[71:0].clk"/>

</interconnect>
</pb_type>

The mode finishes with a specification of the interconnect between the slice and its parent.

<interconnect>
<direct input="block_mult.A" output="mult_36x36_slice.A_cfg"/>
<direct input="block_mult.B" output="mult_36x36_slice.A_cfg"/>
<direct input="mult_36x36_slice.OUT_cfg" output="block_mult.OUT"/>
<direct input="block_mult.clk" output="mult_36x36_slice.clk"/>

</interconnect>
</mode>

After the mode containing the 36x36 multiplier slice is described, the mode containing two fracturable 18x18 multi-
pliers is described:

<mode name="two_divisible_mult_18x18">
<pb_type name="divisible_mult_18x18" num_pb="2">
<input name="A" num_pins="18"/>
<input name="B" num_pins="18"/>
<input name="OUT" num_pins="36"/>
<clock name="clk"/>

This mode has two additional modes which are the actual 18x18 multiply block or two 9x9 mulitplier blocks. Both
follow a similar description as the mult_36x36_slice with just the number of pins halved so the details are not
repeated.

<mode name="two_divisible_mult_18x18">
<pb_type name="mult_18x18_slice" num_pb="1">
<!-- follows previous pattern for slice definition -->

</pb_type>
<interconnect>

<!-- follows previous pattern for slice definition -->
</interconnect>

</mode>
(continues on next page)
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<mode name="two_mult_9x9">
<pb_type name="mult_9x9_slice" num_pb="2">

<!-- follows previous pattern for slice definition -->
</pb_type>
<interconnect>

<!-- follows previous pattern for slice definition -->
</interconnect>

</mode>

</pb_type>

The interconnect for the divisible 18x18 mode is shown in Fig. 8.11. The unique characteristic of this interconnect is
that the input and output ports of the parent is split in half, one half for each child. A convenient way to specify this
is to use the syntax divisible_mult_18x18[1:0] which will append the pins of the ports of the children together. The
interconnect for the fracturable 18x18 mode is described here:

Fig. 8.11: Multiplier Cluster

<interconnect>
<direct input="block_mult.A" output="divisible_mult_18x18[1:0].A"/>
<direct input="block_mult.B" output="divisible_mult_18x18[1:0].B"/>
<direct input="divisible_mult_18x18[1:0].OUT" output="block_mult.OUT"/>
<complete input="block_mult.clk" output="divisible_mult_18x18[1:0].clk"/>

</interconnect>
</mode>

</pb_type>

Fracturable Multiplier Bus-Based Complete Example

<!-- Example of a fracturable mutliplier whose inputs and outputs may be optionally
→˓registered

The multiplier hard logic block can implement one 36x36, two 18x18, or four 9x9
→˓multiplies
-->

<pb_type name="block_mult">
<input name="A" num_pins="36"/>
<input name="B" num_pins="36"/>
<output name="OUT" num_pins="72"/>
<clock name="clk"/>

<mode name="mult_36x36">
<pb_type name="mult_36x36_slice" num_pb="1">

(continues on next page)
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<input name="A_cfg" num_pins="36" equivalence="false"/>
<input name="B_cfg" num_pins="36" equivalence="false"/>
<input name="OUT_cfg" num_pins="72" equivalence="false"/>
<clock name="clk"/>

<pb_type name="reg_36x36_A" blif_model=".latch" num_pb="36" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>
<pb_type name="reg_36x36_B" blif_model=".latch" num_pb="36" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>
<pb_type name="reg_36x36_out" blif_model=".latch" num_pb="72" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>

<pb_type name="mult_36x36" blif_model=".subckt mult" num_pb="1">
<input name="A" num_pins="36"/>
<input name="B" num_pins="36"/>
<output name="OUT" num_pins="72"/>

</pb_type>

<interconnect>
<direct input="mult_36x36_slice.A_cfg" output="reg_36x36_A[35:0].D"/>
<direct input="mult_36x36_slice.B_cfg" output="reg_36x36_B[35:0].D"/>
<mux input="mult_36x36_slice.A_cfg reg_36x36_A[35:0].Q" output="mult_36x36.A"/

→˓>
<mux input="mult_36x36_slice.B_cfg reg_36x36_B[35:0].Q" output="mult_36x36.B"/

→˓>

<direct input="mult_36x36.OUT" output="reg_36x36_out[71:0].D"/>
<mux input="mult_36x36.OUT reg_36x36_out[71:0].Q" output="mult_36x36_slice.

→˓OUT_cfg"/>

<complete input="mult_36x36_slice.clk" output="reg_36x36_A[35:0].clk"/>
<complete input="mult_36x36_slice.clk" output="reg_36x36_B[35:0].clk"/>
<complete input="mult_36x36_slice.clk" output="reg_36x36_out[71:0].clk"/>

</interconnect>
</pb_type>
<interconnect>

<direct input="block_mult.A" output="mult_36x36_slice.A_cfg"/>
<direct input="block_mult.B" output="mult_36x36_slice.A_cfg"/>
<direct input="mult_36x36_slice.OUT_cfg" output="block_mult.OUT"/>
<direct input="block_mult.clk" output="mult_36x36_slice.clk"/>

</interconnect>
</mode>

<mode name="two_divisible_mult_18x18">
<pb_type name="divisible_mult_18x18" num_pb="2">
<input name="A" num_pins="18"/>
<input name="B" num_pins="18"/>
<input name="OUT" num_pins="36"/>

(continues on next page)
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<clock name="clk"/>

<mode name="mult_18x18">
<pb_type name="mult_18x18_slice" num_pb="1">
<input name="A_cfg" num_pins="18"/>
<input name="B_cfg" num_pins="18"/>
<input name="OUT_cfg" num_pins="36"/>
<clock name="clk"/>

<pb_type name="reg_18x18_A" blif_model=".latch" num_pb="18" class="flipflop
→˓">

<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>
<pb_type name="reg_18x18_B" blif_model=".latch" num_pb="18" class="flipflop

→˓">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>
<pb_type name="reg_18x18_out" blif_model=".latch" num_pb="36" class=

→˓"flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>

<pb_type name="mult_18x18" blif_model=".subckt mult" num_pb="1">
<input name="A" num_pins="18"/>
<input name="B" num_pins="18"/>
<output name="OUT" num_pins="36"/>

</pb_type>

<interconnect>
<direct input="mult_18x18_slice.A_cfg" output="reg_18x18_A[17:0].D"/>
<direct input="mult_18x18_slice.B_cfg" output="reg_18x18_B[17:0].D"/>
<mux input="mult_18x18_slice.A_cfg reg_18x18_A[17:0].Q" output="mult_

→˓18x18.A"/>
<mux input="mult_18x18_slice.B_cfg reg_18x18_B[17:0].Q" output="mult_

→˓18x18.B"/>

<direct input="mult_18x18.OUT" output="reg_18x18_out[35:0].D"/>
<mux input="mult_18x18.OUT reg_18x18_out[35:0].Q" output="mult_18x18_

→˓slice.OUT_cfg"/>

<complete input="mult_18x18_slice.clk" output="reg_18x18_A[17:0].clk"/>
<complete input="mult_18x18_slice.clk" output="reg_18x18_B[17:0].clk"/>
<complete input="mult_18x18_slice.clk" output="reg_18x18_out[35:0].clk"/>

</interconnect>
</pb_type>
<interconnect>
<direct input="divisible_mult_18x18.A" output="mult_18x18_slice.A_cfg"/>
<direct input="divisible_mult_18x18.B" output="mult_18x18_slice.A_cfg"/>
<direct input="mult_18x18_slice.OUT_cfg" output="divisible_mult_18x18.OUT"/>
<complete input="divisible_mult_18x18.clk" output="mult_18x18_slice.clk"/>

</interconnect>
(continues on next page)

8.2. Architecture Modeling 225



Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

</mode>

<mode name="two_mult_9x9">
<pb_type name="mult_9x9_slice" num_pb="2">
<input name="A_cfg" num_pins="9"/>
<input name="B_cfg" num_pins="9"/>
<input name="OUT_cfg" num_pins="18"/>
<clock name="clk"/>

<pb_type name="reg_9x9_A" blif_model=".latch" num_pb="9" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>
<pb_type name="reg_9x9_B" blif_model=".latch" num_pb="9" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>
<pb_type name="reg_9x9_out" blif_model=".latch" num_pb="18" class="flipflop

→˓">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>

<pb_type name="mult_9x9" blif_model=".subckt mult" num_pb="1">
<input name="A" num_pins="9"/>
<input name="B" num_pins="9"/>
<output name="OUT" num_pins="18"/>

</pb_type>

<interconnect>
<direct input="mult_9x9_slice.A_cfg" output="reg_9x9_A[8:0].D"/>
<direct input="mult_9x9_slice.B_cfg" output="reg_9x9_B[8:0].D"/>
<mux input="mult_9x9_slice.A_cfg reg_9x9_A[8:0].Q" output="mult_9x9.A"/>
<mux input="mult_9x9_slice.B_cfg reg_9x9_B[8:0].Q" output="mult_9x9.B"/>

<direct input="mult_9x9.OUT" output="reg_9x9_out[17:0].D"/>
<mux input="mult_9x9.OUT reg_9x9_out[17:0].Q" output="mult_9x9_slice.OUT_

→˓cfg"/>

<complete input="mult_9x9_slice.clk" output="reg_9x9_A[8:0].clk"/>
<complete input="mult_9x9_slice.clk" output="reg_9x9_B[8:0].clk"/>
<complete input="mult_9x9_slice.clk" output="reg_9x9_out[17:0].clk"/>

</interconnect>
</pb_type>
<interconnect>
<direct input="divisible_mult_18x18.A" output="mult_9x9_slice[1:0].A_cfg"/>
<direct input="divisible_mult_18x18.B" output="mult_9x9_slice[1:0].A_cfg"/>
<direct input="mult_9x9_slice[1:0].OUT_cfg" output="divisible_mult_18x18.OUT

→˓"/>
<complete input="divisible_mult_18x18.clk" output="mult_9x9_slice[1:0].clk"/

→˓>
</interconnect>

</mode>
</pb_type>

(continues on next page)
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<interconnect>
<direct input="block_mult.A" output="divisible_mult_18x18[1:0].A"/>
<direct input="block_mult.B" output="divisible_mult_18x18[1:0].B"/>
<direct input="divisible_mult_18x18[1:0].OUT" output="block_mult.OUT"/>
<complete input="block_mult.clk" output="divisible_mult_18x18[1:0].clk"/>

</interconnect>
</mode>

<fc_in type="frac">0.15</fc_in>
<fc_out type="frac">0.125</fc_out>

<pinlocations pattern="custom">
<loc side="left">a[35:0]</loc>
<loc side="left" offset="1">b[35:0]</loc>
<loc side="right">out[19:0]</loc>
<loc side="right" offset="1">out[39:20]</loc>
<loc side="right" offset="2">out[63:40]</loc>

</pinlocations>

<gridlocations>
<loc type="col" start="4" repeat="5" priority="2"/>

</gridlocations>
</pb_type>

Architecture Description Examples:

8.2.5 Fracturable Multiplier Example

A 36x36 multiplier fracturable into 18x18s and 9x9s

<pb_type name="mult_36" height="3">
<input name="a" num_pins="36"/>
<input name="b" num_pins="36"/>
<output name="out" num_pins="72"/>

<mode name="two_divisible_mult_18x18">
<pb_type name="divisible_mult_18x18" num_pb="2">

<input name="a" num_pins="18"/>
<input name="b" num_pins="18"/>
<output name="out" num_pins="36"/>

<mode name="two_mult_9x9">
<pb_type name="mult_9x9_slice" num_pb="2">

<input name="A_cfg" num_pins="9"/>
<input name="B_cfg" num_pins="9"/>
<output name="OUT_cfg" num_pins="18"/>

<pb_type name="mult_9x9" blif_model=".subckt multiply" num_pb="1" area=
→˓"300">

<input name="a" num_pins="9"/>
<input name="b" num_pins="9"/>
<output name="out" num_pins="18"/>
<delay_constant max="2.03e-13" min="1.89e-13" in_port="{a b}" out_port=

→˓"out"/>
</pb_type>

(continues on next page)
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<interconnect>
<direct name="a2a" input="mult_9x9_slice.A_cfg" output="mult_9x9.a">

<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_9x9_slice.
→˓A_cfg" out_port="mult_9x9.a"/>

<C_constant C="1.89e-13" in_port="mult_9x9_slice.A_cfg" out_port=
→˓"mult_9x9.a"/>

</direct>
<direct name="b2b" input="mult_9x9_slice.B_cfg" output="mult_9x9.b">

<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_9x9_slice.
→˓B_cfg" out_port="mult_9x9.b"/>

<C_constant C="1.89e-13" in_port="mult_9x9_slice.B_cfg" out_port=
→˓"mult_9x9.b"/>

</direct>
<direct name="out2out" input="mult_9x9.out" output="mult_9x9_slice.OUT_

→˓cfg">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_9x9.out"

→˓out_port="mult_9x9_slice.OUT_cfg"/>
<C_constant C="1.89e-13" in_port="mult_9x9.out" out_port="mult_9x9_

→˓slice.OUT_cfg"/>
</direct>

</interconnect>
</pb_type>
<interconnect>

<direct name="a2a" input="divisible_mult_18x18.a" output="mult_9x9_
→˓slice[1:0].A_cfg">

<delay_constant max="2.03e-13" min="1.89e-13" in_port="divisible_mult_
→˓18x18.a" out_port="mult_9x9_slice[1:0].A_cfg"/>

<C_constant C="1.89e-13" in_port="divisible_mult_18x18.a" out_port=
→˓"mult_9x9_slice[1:0].A_cfg"/>

</direct>
<direct name="b2b" input="divisible_mult_18x18.b" output="mult_9x9_

→˓slice[1:0].B_cfg">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="divisible_mult_

→˓18x18.b" out_port="mult_9x9_slice[1:0].B_cfg"/>
<C_constant C="1.89e-13" in_port="divisible_mult_18x18.b" out_port=

→˓"mult_9x9_slice[1:0].B_cfg"/>
</direct>
<direct name="out2out" input="mult_9x9_slice[1:0].OUT_cfg" output=

→˓"divisible_mult_18x18.out">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_9x9_

→˓slice[1:0].OUT_cfg" out_port ="divisible_mult_18x18.out"/>
<C_constant C="1.89e-13" in_port="mult_9x9_slice[1:0].OUT_cfg" out_port=

→˓"divisible_mult_18x18.out"/>
</direct>

</interconnect>
</mode>

<mode name="mult_18x18">
<pb_type name="mult_18x18_slice" num_pb="1">

<input name="A_cfg" num_pins="18"/>
<input name="B_cfg" num_pins="18"/>
<output name="OUT_cfg" num_pins="36"/>

<pb_type name="mult_18x18" blif_model=".subckt multiply" num_pb="1" area=
→˓"1000">

<input name="a" num_pins="18"/>
(continues on next page)
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<input name="b" num_pins="18"/>
<output name="out" num_pins="36"/>
<delay_constant max="2.03e-13" min="1.89e-13" in_port="{a b}" out_port=

→˓"out"/>
</pb_type>

<interconnect>
<direct name="a2a" input="mult_18x18_slice.A_cfg" output="mult_18x18.a">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_18x18_

→˓slice.A_cfg" out_port="mult_18x18.a"/>
<C_constant C="1.89e-13" in_port="mult_18x18_slice.A_cfg" out_port=

→˓"mult_18x18.a"/>
</direct>
<direct name="b2b" input="mult_18x18_slice.B_cfg" output="mult_18x18.b">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_18x18_

→˓slice.B_cfg" out_port="mult_18x18.b"/>
<C_constant C="1.89e-13" in_port="mult_18x18_slice.B_cfg" out_port=

→˓"mult_18x18.b"/>
</direct>
<direct name="out2out" input="mult_18x18.out" output="mult_18x18_slice.

→˓OUT_cfg">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_18x18.out

→˓" out_port="mult_18x18_slice.OUT_cfg"/>
<C_constant C="1.89e-13" in_port="mult_18x18.out" out_port="mult_

→˓18x18_slice.OUT_cfg"/>
</direct>

</interconnect>
</pb_type>
<interconnect>

<direct name="a2a" input="divisible_mult_18x18.a" output="mult_18x18_
→˓slice.A_cfg">

<delay_constant max="2.03e-13" min="1.89e-13" in_port="divisible_mult_
→˓18x18.a" out_port="mult_18x18_slice.A_cfg"/>

<C_constant C="1.89e-13" in_port="divisible_mult_18x18.a" out_port=
→˓"mult_18x18_slice.A_cfg"/>

</direct>
<direct name="b2b" input="divisible_mult_18x18.b" output="mult_18x18_

→˓slice.B_cfg">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="divisible_mult_

→˓18x18.b" out_port="mult_18x18_slice.B_cfg"/>
<C_constant C="1.89e-13" in_port="divisible_mult_18x18.b" out_port=

→˓"mult_18x18_slice.B_cfg"/>
</direct>
<direct name="out2out" input="mult_18x18_slice.OUT_cfg" output="divisible_

→˓mult_18x18.out">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_18x18_slice.

→˓OUT_cfg" out_port="divisible_mult_18x18.out"/>
<C_constant C="1.89e-13" in_port="mult_18x18_slice.OUT_cfg" out_port=

→˓"divisible_mult_18x18.out"/>
</direct>

</interconnect>
</mode>

</pb_type>
<interconnect>
<direct name="a2a" input="mult_36.a" output="divisible_mult_18x18[1:0].a">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36.a" out_port=

→˓"divisible_mult_18x18[1:0].a"/>
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<C_constant C="1.89e-13" in_port="mult_36.a" out_port="divisible_mult_
→˓18x18[1:0].a"/>

</direct>
<direct name="b2b" input="mult_36.b" output="divisible_mult_18x18[1:0].a">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36.b" out_port=

→˓"divisible_mult_18x18[1:0].a"/>
<C_constant C="1.89e-13" in_port="mult_36.b" out_port="divisible_mult_

→˓18x18[1:0].a"/>
</direct>
<direct name="out2out" input="divisible_mult_18x18[1:0].out" output="mult_36.

→˓out">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="divisible_mult_

→˓18x18[1:0].out" out_port ="mult_36.out"/>
<C_constant C="1.89e-13" in_port="divisible_mult_18x18[1:0].out" out_port=

→˓"mult_36.out"/>
</direct>

</interconnect>
</mode>

<mode name="mult_36x36">
<pb_type name="mult_36x36_slice" num_pb="1">
<input name="A_cfg" num_pins="36"/>
<input name="B_cfg" num_pins="36"/>
<output name="OUT_cfg" num_pins="72"/>

<pb_type name="mult_36x36" blif_model=".subckt multiply" num_pb="1" area="4000
→˓">

<input name="a" num_pins="36"/>
<input name="b" num_pins="36"/>
<output name="out" num_pins="72"/>
<delay_constant max="2.03e-13" min="1.89e-13" in_port="{a b}" out_port="out

→˓"/>
</pb_type>

<interconnect>
<direct name="a2a" input="mult_36x36_slice.A_cfg" output="mult_36x36.a">

<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36x36_slice.A_
→˓cfg" out_port="mult_36x36.a"/>

<C_constant C="1.89e-13" in_port="mult_36x36_slice.A_cfg" out_port="mult_
→˓36x36.a"/>

</direct>
<direct name="b2b" input="mult_36x36_slice.B_cfg" output="mult_36x36.b">

<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36x36_slice.B_
→˓cfg" out_port="mult_36x36.b"/>

<C_constant C="1.89e-13" in_port="mult_36x36_slice.B_cfg" out_port="mult_
→˓36x36.b"/>

</direct>
<direct name="out2out" input="mult_36x36.out" output="mult_36x36_slice.OUT_

→˓cfg">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36x36.out"

→˓out_port="mult_36x36_slice.OUT_cfg"/>
<C_constant C="1.89e-13" in_port="mult_36x36.out" out_port="mult_36x36_

→˓slice.OUT_cfg"/>
</direct>

</interconnect>
</pb_type>
<interconnect>
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<direct name="a2a" input="mult_36.a" output="mult_36x36_slice.A_cfg">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36.a" out_port=

→˓"mult_36x36_slice.A_cfg"/>
<C_constant C="1.89e-13" in_port="mult_36.a" out_port="mult_36x36_slice.A_

→˓cfg"/>
</direct>
<direct name="b2b" input="mult_36.b" output="mult_36x36_slice.B_cfg">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36.b" out_port=

→˓"mult_36x36_slice.B_cfg"/>
<C_constant C="1.89e-13" in_port="mult_36.b" out_port="mult_36x36_slice.B_

→˓cfg"/>
</direct>
<direct name="out2out" input="mult_36x36_slice.OUT_cfg" output="mult_36.out">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36x36_slice.OUT_

→˓cfg" out_port="mult_36.out"/>
<C_constant C="1.89e-13" in_port="mult_36x36_slice.OUT_cfg" out_port="mult_

→˓36.out"/>
</direct>

</interconnect>
</mode>

<fc_in type="frac"> 0.15</fc_in>
<fc_out type="frac"> 0.125</fc_out>
<pinlocations pattern="spread"/>

<gridlocations>
<loc type="col" start="4" repeat="5" priority="2"/>

</gridlocations>
</pb_type>

8.2.6 Configurable Memory Block Example

A memory block with a reconfigurable aspect ratio.

<pb_type name="memory" height="1">
<input name="addr1" num_pins="14"/>
<input name="addr2" num_pins="14"/>
<input name="data" num_pins="16"/>
<input name="we1" num_pins="1"/>
<input name="we2" num_pins="1"/>
<output name="out" num_pins="16"/>
<clock name="clk" num_pins="1"/>

<mode name="mem_1024x16_sp">
<pb_type name="mem_1024x16_sp" blif_model=".subckt single_port_ram" class=

→˓"memory" num_pb="1" area="1000">
<input name="addr" num_pins="10" port_class="address"/>
<input name="data" num_pins="16" port_class="data_in"/>
<input name="we" num_pins="1" port_class="write_en"/>
<output name="out" num_pins="16" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>

</pb_type>
<interconnect>

<direct name="address1" input="memory.addr1[9:0]" output="mem_1024x16_sp.addr
→˓">
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</direct>
<direct name="data1" input="memory.data[15:0]" output="mem_1024x16_sp.data">
</direct>
<direct name="writeen1" input="memory.we1" output="mem_1024x16_sp.we">
</direct>
<direct name="dataout1" input="mem_1024x16_sp.out" output="memory.out[15:0]">
</direct>
<direct name="clk" input="memory.clk" output="mem_1024x16_sp.clk">
</direct>

</interconnect>
</mode>
<mode name="mem_2048x8_dp">
<pb_type name="mem_2048x8_dp" blif_model=".subckt dual_port_ram" class="memory"

→˓num_pb="1" area="1000">
<input name="addr1" num_pins="11" port_class="address1"/>
<input name="addr2" num_pins="11" port_class="address2"/>
<input name="data1" num_pins="8" port_class="data_in1"/>
<input name="data2" num_pins="8" port_class="data_in2"/>
<input name="we1" num_pins="1" port_class="write_en1"/>
<input name="we2" num_pins="1" port_class="write_en2"/>
<output name="out1" num_pins="8" port_class="data_out1"/>
<output name="out2" num_pins="8" port_class="data_out2"/>
<clock name="clk" num_pins="1" port_class="clock"/>

</pb_type>
<interconnect>

<direct name="address1" input="memory.addr1[10:0]" output="mem_2048x8_dp.addr1
→˓">

</direct>
<direct name="address2" input="memory.addr2[10:0]" output="mem_2048x8_dp.addr2

→˓">
</direct>
<direct name="data1" input="memory.data[7:0]" output="mem_2048x8_dp.data1">
</direct>
<direct name="data2" input="memory.data[15:8]" output="mem_2048x8_dp.data2">
</direct>
<direct name="writeen1" input="memory.we1" output="mem_2048x8_dp.we1">
</direct>
<direct name="writeen2" input="memory.we2" output="mem_2048x8_dp.we2">
</direct>
<direct name="dataout1" input="mem_2048x8_dp.out1" output="memory.out[7:0]">
</direct>
<direct name="dataout2" input="mem_2048x8_dp.out2" output="memory.out[15:8]">
</direct>
<direct name="clk" input="memory.clk" output="mem_2048x8_dp.clk">
</direct>

</interconnect>
</mode>

<mode name="mem_2048x8_sp">
<pb_type name="mem_2048x8_sp" blif_model=".subckt single_port_ram" class="memory

→˓" num_pb="1" area="1000">
<input name="addr" num_pins="11" port_class="address"/>
<input name="data" num_pins="8" port_class="data_in"/>
<input name="we" num_pins="1" port_class="write_en"/>
<output name="out" num_pins="8" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>

</pb_type>
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<interconnect>
<direct name="address1" input="memory.addr1[10:0]" output="mem_2048x8_sp.addr

→˓">
</direct>
<direct name="data1" input="memory.data[7:0]" output="mem_2048x8_sp.data">
</direct>
<direct name="writeen1" input="memory.we1" output="mem_2048x8_sp.we">
</direct>
<direct name="dataout1" input="mem_2048x8_sp.out" output="memory.out[7:0]">
</direct>
<direct name="clk" input="memory.clk" output="mem_2048x8_sp.clk">
</direct>

</interconnect>
</mode>
<mode name="mem_4096x4_dp">
<pb_type name="mem_4096x4_dp" blif_model=".subckt dual_port_ram" class="memory"

→˓num_pb="1" area="1000">
<input name="addr1" num_pins="12" port_class="address1"/>
<input name="addr2" num_pins="12" port_class="address2"/>
<input name="data1" num_pins="4" port_class="data_in1"/>
<input name="data2" num_pins="4" port_class="data_in2"/>
<input name="we1" num_pins="1" port_class="write_en1"/>
<input name="we2" num_pins="1" port_class="write_en2"/>
<output name="out1" num_pins="4" port_class="data_out1"/>
<output name="out2" num_pins="4" port_class="data_out2"/>
<clock name="clk" num_pins="1" port_class="clock"/>

</pb_type>
<interconnect>

<direct name="address1" input="memory.addr1[11:0]" output="mem_4096x4_dp.addr1
→˓">

</direct>
<direct name="address2" input="memory.addr2[11:0]" output="mem_4096x4_dp.addr2

→˓">
</direct>
<direct name="data1" input="memory.data[3:0]" output="mem_4096x4_dp.data1">
</direct>
<direct name="data2" input="memory.data[7:4]" output="mem_4096x4_dp.data2">
</direct>
<direct name="writeen1" input="memory.we1" output="mem_4096x4_dp.we1">
</direct>
<direct name="writeen2" input="memory.we2" output="mem_4096x4_dp.we2">
</direct>
<direct name="dataout1" input="mem_4096x4_dp.out1" output="memory.out[3:0]">
</direct>
<direct name="dataout2" input="mem_4096x4_dp.out2" output="memory.out[7:4]">
</direct>
<direct name="clk" input="memory.clk" output="mem_4096x4_dp.clk">
</direct>

</interconnect>
</mode>

<mode name="mem_4096x4_sp">
<pb_type name="mem_4096x4_sp" blif_model=".subckt single_port_ram" class="memory

→˓" num_pb="1" area="1000">
<input name="addr" num_pins="12" port_class="address"/>
<input name="data" num_pins="4" port_class="data_in"/>
<input name="we" num_pins="1" port_class="write_en"/>
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<output name="out" num_pins="4" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>

</pb_type>
<interconnect>

<direct name="address1" input="memory.addr1[11:0]" output="mem_4096x4_sp.addr
→˓">

</direct>
<direct name="data1" input="memory.data[3:0]" output="mem_4096x4_sp.data">
</direct>
<direct name="writeen1" input="memory.we1" output="mem_4096x4_sp.we">
</direct>
<direct name="dataout1" input="mem_4096x4_sp.out" output="memory.out[3:0]">
</direct>
<direct name="clk" input="memory.clk" output="mem_4096x4_sp.clk">
</direct>

</interconnect>
</mode>
<mode name="mem_8192x2_dp">
<pb_type name="mem_8192x2_dp" blif_model=".subckt dual_port_ram" class="memory"

→˓num_pb="1" area="1000">
<input name="addr1" num_pins="13" port_class="address1"/>
<input name="addr2" num_pins="13" port_class="address2"/>
<input name="data1" num_pins="2" port_class="data_in1"/>
<input name="data2" num_pins="2" port_class="data_in2"/>
<input name="we1" num_pins="1" port_class="write_en1"/>
<input name="we2" num_pins="1" port_class="write_en2"/>
<output name="out1" num_pins="2" port_class="data_out1"/>
<output name="out2" num_pins="2" port_class="data_out2"/>
<clock name="clk" num_pins="1" port_class="clock"/>

</pb_type>
<interconnect>

<direct name="address1" input="memory.addr1[12:0]" output="mem_8192x2_dp.addr1
→˓">

</direct>
<direct name="address2" input="memory.addr2[12:0]" output="mem_8192x2_dp.addr2

→˓">
</direct>
<direct name="data1" input="memory.data[1:0]" output="mem_8192x2_dp.data1">
</direct>
<direct name="data2" input="memory.data[3:2]" output="mem_8192x2_dp.data2">
</direct>
<direct name="writeen1" input="memory.we1" output="mem_8192x2_dp.we1">
</direct>
<direct name="writeen2" input="memory.we2" output="mem_8192x2_dp.we2">
</direct>
<direct name="dataout1" input="mem_8192x2_dp.out1" output="memory.out[1:0]">
</direct>
<direct name="dataout2" input="mem_8192x2_dp.out2" output="memory.out[3:2]">
</direct>
<direct name="clk" input="memory.clk" output="mem_8192x2_dp.clk">
</direct>

</interconnect>
</mode>

<mode name="mem_8192x2_sp">
<pb_type name="mem_8192x2_sp" blif_model=".subckt single_port_ram" class="memory

→˓" num_pb="1" area="1000">
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<input name="addr" num_pins="13" port_class="address"/>
<input name="data" num_pins="2" port_class="data_in"/>
<input name="we" num_pins="1" port_class="write_en"/>
<output name="out" num_pins="2" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>

</pb_type>
<interconnect>

<direct name="address1" input="memory.addr1[12:0]" output="mem_8192x2_sp.addr
→˓">

</direct>
<direct name="data1" input="memory.data[1:0]" output="mem_8192x2_sp.data">
</direct>
<direct name="writeen1" input="memory.we1" output="mem_8192x2_sp.we">
</direct>
<direct name="dataout1" input="mem_8192x2_sp.out" output="memory.out[1:0]">
</direct>
<direct name="clk" input="memory.clk" output="mem_8192x2_sp.clk">
</direct>

</interconnect>
</mode>
<mode name="mem_16384x1_dp">
<pb_type name="mem_16384x1_dp" blif_model=".subckt dual_port_ram" class="memory

→˓" num_pb="1" area="1000">
<input name="addr1" num_pins="14" port_class="address1"/>
<input name="addr2" num_pins="14" port_class="address2"/>
<input name="data1" num_pins="1" port_class="data_in1"/>
<input name="data2" num_pins="1" port_class="data_in2"/>
<input name="we1" num_pins="1" port_class="write_en1"/>
<input name="we2" num_pins="1" port_class="write_en2"/>
<output name="out1" num_pins="1" port_class="data_out1"/>
<output name="out2" num_pins="1" port_class="data_out2"/>
<clock name="clk" num_pins="1" port_class="clock"/>

</pb_type>
<interconnect>

<direct name="address1" input="memory.addr1[13:0]" output="mem_16384x1_dp.
→˓addr1">

</direct>
<direct name="address2" input="memory.addr2[13:0]" output="mem_16384x1_dp.

→˓addr2">
</direct>
<direct name="data1" input="memory.data[0:0]" output="mem_16384x1_dp.data1">
</direct>
<direct name="data2" input="memory.data[1:1]" output="mem_16384x1_dp.data2">
</direct>
<direct name="writeen1" input="memory.we1" output="mem_16384x1_dp.we1">
</direct>
<direct name="writeen2" input="memory.we2" output="mem_16384x1_dp.we2">
</direct>
<direct name="dataout1" input="mem_16384x1_dp.out1" output="memory.out[0:0]">
</direct>
<direct name="dataout2" input="mem_16384x1_dp.out2" output="memory.out[1:1]">
</direct>
<direct name="clk" input="memory.clk" output="mem_16384x1_dp.clk">
</direct>

</interconnect>
</mode>
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<mode name="mem_16384x1_sp">
<pb_type name="mem_16384x1_sp" blif_model=".subckt single_port_ram" class=

→˓"memory" num_pb="1" area="1000">
<input name="addr" num_pins="14" port_class="address"/>
<input name="data" num_pins="1" port_class="data_in"/>
<input name="we" num_pins="1" port_class="write_en"/>
<output name="out" num_pins="1" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>

</pb_type>
<interconnect>

<direct name="address1" input="memory.addr1[13:0]" output="mem_16384x1_sp.addr
→˓">

</direct>
<direct name="data1" input="memory.data[0:0]" output="mem_16384x1_sp.data">
</direct>
<direct name="writeen1" input="memory.we1" output="mem_16384x1_sp.we">
</direct>
<direct name="dataout1" input="mem_16384x1_sp.out" output="memory.out[0:0]">
</direct>
<direct name="clk" input="memory.clk" output="mem_16384x1_sp.clk">
</direct>

</interconnect>
</mode>

<fc_in type="frac"> 0.15</fc_in>
<fc_out type="frac"> 0.125</fc_out>
<pinlocations pattern="spread"/>
<gridlocations>
<loc type="col" start="2" repeat="5" priority="2"/>

</gridlocations>
</pb_type>

8.2.7 Virtex 6 like Logic Slice Example

In order to demonstrate the expressiveness of the architecture description language, we use it to describe a section of
a commercial logic block. In this example, we describe the Xilinx Virtex-6 FPGA logic slice [Xilinx Inc12], shown in
Fig. 8.12, as follows:

Fig. 8.12: Commercial FPGA logic block slice (Xilinx Virtex-6)

<pb_type name="v6_lslice">

<input name="AX" num_pins="1" equivalent="false"/>
<input name="A" num_pins="5" equivalent="false"/>
<input name="AI" num_pins="1" equivalent="false"/>
<input name="BX" num_pins="1" equivalent="false"/>
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<input name="B" num_pins="5" equivalent="false"/>
<input name="BI" num_pins="1" equivalent="false"/>
<input name="CX" num_pins="1" equivalent="false"/>
<input name="C" num_pins="5" equivalent="false"/>
<input name="CI" num_pins="1" equivalent="false"/>
<input name="DX" num_pins="1" equivalent="false"/>
<input name="D" num_pins="5" equivalent="false"/>
<input name="DI" num_pins="1" equivalent="false"/>
<input name="SR" num_pins="1" equivalent="false"/>
<input name="CIN" num_pins="1" equivalent="false"/>
<input name="CE" num_pins="1" equivalent="false"/>

<output name="AMUX" num_pins="1" equivalent="false"/>
<output name="Aout" num_pins="1" equivalent="false"/>
<output name="AQ" num_pins="1" equivalent="false"/>
<output name="BMUX" num_pins="1" equivalent="false"/>
<output name="Bout" num_pins="1" equivalent="false"/>
<output name="BQ" num_pins="1" equivalent="false"/>
<output name="CMUX" num_pins="1" equivalent="false"/>
<output name="Cout" num_pins="1" equivalent="false"/>
<output name="CQ" num_pins="1" equivalent="false"/>
<output name="DMUX" num_pins="1" equivalent="false"/>
<output name="Dout" num_pins="1" equivalent="false"/>
<output name="DQ" num_pins="1" equivalent="false"/>
<output name="COUT" num_pins="1" equivalent="false"/>

<clock name="CLK"/>

<!--
For the purposes of this example, the Virtex-6 fracturable LUT will be specified

→˓as a primitive.
If the architect wishes to explore the Xilinx Virtex-6 further, add more detail

→˓into this pb_type.
Similar convention for flip-flops

-->
<pb_type name="fraclut" num_pb="4" blif_model=".subckt vfraclut">
<input name="A" num_pins="5"/>
<input name="W" num_pins="5"/>
<input name="DI1" num_pins="1"/>
<input name="DI2" num_pins="1"/>
<output name="MC31" num_pins="1"/>
<output name="O6" num_pins="1"/>
<output name="O5" num_pins="1"/>

</pb_type>
<pb_type name="carry" num_pb="4" blif_model=".subckt carry">
<!-- This is actually the carry-chain but we don't have a special way to specify

→˓chain logic yet in UTFAL
so it needs to be specified as regular gate logic, the xor gate and the two

→˓muxes to the left of it that are shaded grey
comprise the logic gates representing the carry logic -->

<input name="xor" num_pins="1"/>
<input name="cmuxxor" num_pins="1"/>
<input name="cmux" num_pins="1"/>
<input name="cmux_select" num_pins="1"/>
<input name="mmux" num_pins="2"/>
<input name="mmux_select" num_pins="1"/>
<output name="xor_out" num_pins="1"/>

(continues on next page)
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<output name="cmux_out" num_pins="1"/>
<output name="mmux_out" num_pins="1"/>

</pb_type>
<pb_type name="ff_small" num_pb="4" blif_model=".subckt vffs">
<input name="D" num_pins="1"/>
<input name="CE" num_pins="1"/>
<input name="SR" num_pins="1"/>
<output name="Q" num_pins="1"/>
<clock name="CK" num_pins="1"/>

</pb_type>
<pb_type name="ff_big" num_pb="4" blif_model=".subckt vffb">
<input name="D" num_pins="1"/>
<input name="CE" num_pins="1"/>
<input name="SR" num_pins="1"/>
<output name="Q" num_pins="1"/>
<clock name="CK" num_pins="1"/>

</pb_type>
<!-- TODO: Add in ability to specify constants such as gnd/vcc -->

<interconnect>
<direct name="fraclutA" input="{v6_lslice.A v6_lslice.B v6_lslice.C v6_lslice.D}"

→˓output="fraclut.A"/>
<direct name="fraclutW" input="{v6_lslice.A v6_lslice.B v6_lslice.C v6_lslice.D}"

→˓output="fraclut.W"/>
<direct name="fraclutDI2" input="{v6_lslice.AX v6_lslice.BX v6_lslice.CX v6_

→˓lslice.DX}" output="fraclut.DI2"/>
<direct name="DfraclutDI1" input="v6_lslice.DI" output="fraclut[3].DI1"/>

<direct name="carryO6" input="fraclut.O6" output="carry.xor"/>
<direct name="carrymuxxor" input="carry[2:0].cmux_out" output="carry[3:1].cmuxxor

→˓"/>
<direct name="carrymmux" input="{fraclut[3].O6 fraclut[2].O6 fraclut[2].O6

→˓fraclut[1].O6 fraclut[1].O6 fraclut[0].O6}" output="carry[2:0].mmux"/>
<direct name="carrymmux_select" input="{v6_lslice.AX v6_lslice.BX v6_lslice.CX}"

→˓output="carry[2:0].mmux_select"/>

<direct name="cout" input="carry[3].mmux_out" output="v6_lslice.COUT"/>
<direct name="ABCD" input="fraclut[3:0].O6" output="{v6_lslice.Dout v6_lslice.

→˓Cout v6_lslice.Bout v6_lslice.Aout}"/>
<direct name="Q" input="ff_big.Q" output="{DQ CQ BQ AQ}"/>

<mux name="ff_smallA" input="v6_lslice.AX fraclut[0].O5" output="ff_small[0].D"/>
<mux name="ff_smallB" input="v6_lslice.BX fraclut[1].O5" output="ff_small[1].D"/>
<mux name="ff_smallC" input="v6_lslice.CX fraclut[2].O5" output="ff_small[2].D"/>
<mux name="ff_smallD" input="v6_lslice.DX fraclut[3].O5" output="ff_small[3].D"/>

<mux name="ff_bigA" input="fraclut[0].O5 fraclut[0].O6 carry[0].cmux_out carry[0].
→˓mmux_out carry[0].xor_out" output="ff_big[0].D"/>

<mux name="ff_bigB" input="fraclut[1].O5 fraclut[1].O6 carry[1].cmux_out carry[1].
→˓mmux_out carry[1].xor_out" output="ff_big[1].D"/>

<mux name="ff_bigC" input="fraclut[2].O5 fraclut[2].O6 carry[2].cmux_out carry[2].
→˓mmux_out carry[2].xor_out" output="ff_big[2].D"/>

<mux name="ff_bigD" input="fraclut[3].O5 fraclut[3].O6 carry[3].cmux_out carry[3].
→˓mmux_out carry[3].xor_out" output="ff_big[3].D"/>

<mux name="AMUX" input="fraclut[0].O5 fraclut[0].O6 carry[0].cmux_out carry[0].
→˓mmux_out carry[0].xor_out ff_small[0].Q" output="AMUX"/>

(continues on next page)
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<mux name="BMUX" input="fraclut[1].O5 fraclut[1].O6 carry[1].cmux_out carry[1].
→˓mmux_out carry[1].xor_out ff_small[1].Q" output="BMUX"/>

<mux name="CMUX" input="fraclut[2].O5 fraclut[2].O6 carry[2].cmux_out carry[2].
→˓mmux_out carry[2].xor_out ff_small[2].Q" output="CMUX"/>

<mux name="DMUX" input="fraclut[3].O5 fraclut[3].O6 carry[3].cmux_out carry[3].
→˓mmux_out carry[3].xor_out ff_small[3].Q" output="DMUX"/>

<mux name="CfraclutDI1" input="v6_lslice.CI v6_lslice.DI fraclut[3].MC31" output=
→˓"fraclut[2].DI1"/>

<mux name="BfraclutDI1" input="v6_lslice.BI v6_lslice.DI fraclut[2].MC31" output=
→˓"fraclut[1].DI1"/>

<mux name="AfraclutDI1" input="v6_lslice.AI v6_lslice.BI v6_lslice.DI fraclut[2].
→˓MC31 fraclut[1].MC31" output="fraclut[0].DI1"/>

<mux name="carrymuxxorA" input="v6_lslice.AX v6_lslice.CIN" output="carry[0].
→˓muxxor"/>

<mux name="carrymuxA" input="v6_lslice.AX fraclut[0].O5" output="carry[0].cmux"/>
<mux name="carrymuxB" input="v6_lslice.BX fraclut[1].O5" output="carry[1].cmux"/>
<mux name="carrymuxC" input="v6_lslice.CX fraclut[2].O5" output="carry[2].cmux"/>
<mux name="carrymuxD" input="v6_lslice.DX fraclut[3].O5" output="carry[3].cmux"/>

<complete name="clock" input="v6_lslice.CLK" output="{ff_small.CK ff_big.CK}"/>
<complete name="ce" input="v6_lslice.CE" output="{ff_small.CE ff_big.CE}"/>
<complete name="SR" input="v6_lslice.SR" output="{ff_small.SR ff_big.SR}"/>

</interconnect>
</pb_type>

8.2.8 Equivalent Sites tutorial

This tutorial aims at providing information to the user on how to model the equivalent sites to enable equivalent
placement in VPR.

Equivalent site placement allows the user to define complex logical blocks (top-level pb_types) that can be used in
multiple physical location types of the FPGA device grid. In the same way, the user can define many physical tiles
that have different physical attributes that can implement the same logical block.

The first case (multiple physical grid location types for one complex logical block) is explained below. The device has
at disposal two different Configurable Logic Blocks (CLB), SLICEL and SLICEM. In this case, the SLICEM CLB is
a superset that implements additional features w.r.t. the SLICEL CLB. Therefore, the user can decide to model the
architecture to be able to place the SLICEL Complex Block in a SLICEM physical tile, being it a valid grid location.
This behavior can lead to the generation of more accurate and better placement results, given that a Complex Logic
Block is not bound to only one physical location type.

Below the user can find the implementation of this situation starting from an example that does not make use of the
equivalent site placement:

<tiles>
<tile name="SLICEL_TILE">

<input name="IN_A" num_pins="6"/>
<input name="AX" num_pins="1"/>
<input name="SR" num_pins="1"/>
<input name="CE" num_pins="1"/>
<input name="CIN" num_pins="1"/>
<clock name="CLK" num_pins="1"/>
<output name="A" num_pins="1"/>

(continues on next page)
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<output name="AMUX" num_pins="1"/>
<output name="AQ" num_pins="1"/>

<equivalent_sites>
<site pb_type="SLICEL_SITE" pin_mapping="direct"/>

</equivalent_sites>

<fc />
<pinlocations />

</tile>
<tile name="SLICEM_TILE">

<input name="IN_A" num_pins="6"/>
<input name="AX" num_pins="1"/>
<input name="AI" num_pins="1"/>
<input name="SR" num_pins="1"/>
<input name="WE" num_pins="1"/>
<input name="CE" num_pins="1"/>
<input name="CIN" num_pins="1"/>
<clock name="CLK" num_pins="1"/>
<output name="A" num_pins="1"/>
<output name="AMUX" num_pins="1"/>
<output name="AQ" num_pins="1"/>

<equivalent_sites>
<site pb_type="SLICEM_SITE" pin_mapping="direct"/>

</equivalent_sites>

<fc />
<pinlocations />

</tile>
</tiles>

<complexblocklist>
<pb_type name="SLICEL_SITE"/>

<input name="IN_A" num_pins="6"/>
<input name="AX" num_pins="1"/>
<input name="AI" num_pins="1"/>
<input name="SR" num_pins="1"/>
<input name="CE" num_pins="1"/>
<input name="CIN" num_pins="1"/>
<clock name="CLK" num_pins="1"/>
<output name="A" num_pins="1"/>
<output name="AMUX" num_pins="1"/>
<output name="AQ" num_pins="1"/>
<mode />
/

</pb_type>
<pb_type name="SLICEM_SITE"/>

<input name="IN_A" num_pins="6"/>
<input name="AX" num_pins="1"/>
<input name="SR" num_pins="1"/>
<input name="WE" num_pins="1"/>
<input name="CE" num_pins="1"/>
<input name="CIN" num_pins="1"/>
<clock name="CLK" num_pins="1"/>
<output name="A" num_pins="1"/>
<output name="AMUX" num_pins="1"/>

(continues on next page)
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<output name="AQ" num_pins="1"/>
<mode />
/

</pb_type>
</complexblocklist>

As the user can see, SLICEL and SLICEM are treated as two different entities, even though they seem to be similar
one to another. To have the possibility to make VPR choose a SLICEM location when placing a SLICEL_SITE
pb_type, the user needs to change the SLICEM tile accordingly, as shown below:

<tile name="SLICEM_TILE">
<input name="IN_A" num_pins="6"/>
<input name="AX" num_pins="1"/>
<input name="AI" num_pins="1"/>
<input name="SR" num_pins="1"/>
<input name="WE" num_pins="1"/>
<input name="CE" num_pins="1"/>
<input name="CIN" num_pins="1"/>
<clock name="CLK" num_pins="1"/>
<output name="A" num_pins="1"/>
<output name="AMUX" num_pins="1"/>
<output name="AQ" num_pins="1"/>

<equivalent_sites>
<site pb_type="SLICEM_SITE" pin_mapping="direct"/>
<site pb_type="SLICEL_SITE" pin_mapping="custom">

<direct from="SLICEM_TILE.IN_A" to="SLICEL_SITE.IN_A"/>
<direct from="SLICEM_TILE.AX" to="SLICEL_SITE.AX"/>
<direct from="SLICEM_TILE.SR" to="SLICEL_SITE.SR"/>
<direct from="SLICEM_TILE.CE" to="SLICEL_SITE.CE"/>
<direct from="SLICEM_TILE.CIN" to="SLICEL_SITE.CIN"/>
<direct from="SLICEM_TILE.CLK" to="SLICEL_SITE.CLK"/>
<direct from="SLICEM_TILE.A" to="SLICEL_SITE.A"/>
<direct from="SLICEM_TILE.AMUX" to="SLICEL_SITE.AMUX"/>
<direct from="SLICEM_TILE.AQ" to="SLICEL_SITE.AQ"/>

</site>
</equivalent_sites>

<fc />
<pinlocations />

</tile>

With the above description of the SLICEM tile, the user can now have the SLICEL sites to be placed in SLICEM
physical locations. One thing to notice is that not all the pins have been mapped for the SLICEL_SITE. For instance,
the WE and AI port are absent from the SLICEL_SITE definition, hence they cannot appear in the pin mapping
between physical tile and logical block.

The second case described in this tutorial refers to the situation for which there are multiple different physical location
types in the device grid that are used by one complex logical blocks. Imagine the situation for which the device has
left and right I/O tile types which have different pinlocations, hence they need to be defined in two different ways.
With equivalent site placement, the user doesn’t need to define multiple different pb_types that implement the same
functionality.

Below the user can find the implementation of this situation starting from an example that does not make use of the
equivalent site placement:
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<tiles>
<tile name="LEFT_IOPAD_TILE">

<input name="INPUT" num_pins="1"/>
<output name="OUTPUT" num_pins="1"/>

<equivalent_sites>
<site pb_type="LEFT_IOPAD_SITE" pin_mapping="direct"/>

</equivalent_sites>

<fc />
<pinlocations pattern="custom">

<loc side="left">LEFT_IOPAD_TILE.INPUT</loc>
<loc side="right">LEFT_IOPAD_TILE.OUTPUT</loc>

</pinlocations>
</tile>
<tile name="RIGHT_IOPAD_TILE">

<input name="INPUT" num_pins="1"/>
<output name="OUTPUT" num_pins="1"/>

<equivalent_sites>
<site pb_type="RIGHT_IOPAD_SITE" pin_mapping="direct"/>

</equivalent_sites>

<fc />
<pinlocations pattern="custom">

<loc side="right">RIGHT_IOPAD_TILE.INPUT</loc>
<loc side="left">RIGHT_IOPAD_TILE.OUTPUT</loc>

</pinlocations>
</tile>

</tiles>

<complexblocklist>
<pb_type name="LEFT_IOPAD_SITE">

<input name="INPUT" num_pins="1"/>
<output name="OUTPUT" num_pins="1"/>
<mode />
/

</pb_type>
<pb_type name="RIGHT_IOPAD_SITE">

<input name="INPUT" num_pins="1"/>
<output name="OUTPUT" num_pins="1"/>
<mode />
/

</pb_type>
</complexblocklist>

To avoid duplicating the complex logic blocks in LEFT and RIGHT IOPADS, the user can describe the pb_type only
once and add it to the equivalent sites tag of the two different tiles, as follows:

<tiles>
<tile name="LEFT_IOPAD_TILE">

<input name="INPUT" num_pins="1"/>
<output name="OUTPUT" num_pins="1"/>

<equivalent_sites>
<site pb_type="IOPAD_SITE" pin_mapping="direct"/>

</equivalent_sites>
(continues on next page)
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<fc />
<pinlocations pattern="custom">

<loc side="left">LEFT_IOPAD_TILE.INPUT</loc>
<loc side="right">LEFT_IOPAD_TILE.OUTPUT</loc>

</pinlocations>
</tile>
<tile name="RIGHT_IOPAD_TILE">

<input name="INPUT" num_pins="1"/>
<output name="OUTPUT" num_pins="1"/>

<equivalent_sites>
<site pb_type="IOPAD_SITE" pin_mapping="direct"/>

</equivalent_sites>

<fc />
<pinlocations pattern="custom">

<loc side="right">RIGHT_IOPAD_TILE.INPUT</loc>
<loc side="left">RIGHT_IOPAD_TILE.OUTPUT</loc>

</pinlocations>
</tile>

</tiles>

<complexblocklist>
<pb_type name="IOPAD_SITE">

<input name="INPUT" num_pins="1"/>
<output name="OUTPUT" num_pins="1"/>
<mode>

...
</mode>

</pb_type>
</complexblocklist>

With this implementation, the IOPAD_SITE can be placed both in the LEFT and RIGHT physical location types.
Note that the pin_mapping is set as direct, given that the physical tile and the logical block share the same IO pins.

The two different cases can be mixed to have a N to M mapping of physical tiles/logical blocks.

8.2.9 Heterogeneous tiles tutorial

This tutorial aims at providing information to the user on how to model sub tiles to enable heterogeneous tiles in VPR.

An heterogeneous tile is a tile that includes two or more site types that may differ in the following aspects:

• Block types (pb_type)

• Fc definition

• Pin locations definition

• IO ports definition

As a result, an heterogeneous tile has the possibility of having multiple block types at the same (x, y) location in the
grid. This comes with the introduction of a third spatial coordinate (sub-block) that identifies the placement of the
block type within the x and y grid coordinate.

Moreover, the placer can choose and assign different locations for each block type within the same coordinates as well.
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Fig. 8.13: Device grid, with (x, y, sub-block) coordinates. Each block can be moved by the placer in all the three
spatial dimensions.

To correctly model an architecture, each Physical Tiles requires at least one sub tile definition. This represents a default
homogeneous architecture, composed of one or many instances of the sub tile within the physical tile (the number of
such sub-tiles is referred to as the capacity).

To enhance the expressivity of VPR architecture, additional sub tiles can be inserted alongside with the default sub
tile. This enables the definition of the heterogeneous tiles.

With this new capability, the device grid of a given architecture does include a new sub-block coordinate that identifies
the type of sub tile used and its actual location, in case the capacity is greater than 1.

Heterogeneous tiles examples

Following, there are two examples to illustrate some potential use cases of the heterogeneous tiles, that might be of
interest to the reader.

Note: The examples below are a simplified versions of the real architectural specification.
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Sub-tiles with different pin locations

The Xilinx Series 7 Clock tile is composed of 16 BUFGCTRL sites (pg. 36 of the 7 Series FPGAs Clocking Resources
guide). Even though they are equivalent regarding the ports and Fc definition, some of the sites differ in terms of pin
locations, as depicted by the simplified representation of the Clock tile in Fig. 8.14.

Heterogeneous tiles come in hand to model this kind of tiles and an example is the following:

<tiles>
<tile name="BUFG_TILE">

<sub_tile name="BUFG_SUB_TILE_0" capacity="1">
<clock name="I0" num_pins="1"/>
<clock name="I1" num_pins="1"/>
<input name="CE0" num_pins="1"/>
<input name="CE1" num_pins="1"/>
<input name="IGNORE0" num_pins="1"/>
<input name="IGNORE1" num_pins="1"/>
<input name="S0" num_pins="1"/>
<input name="S1" num_pins="1"/>
<output name="O" num_pins="1"/>
<fc in_type="abs" in_val="2" out_type="abs" out_val="2"/>
<pinlocations pattern="custom">

<loc side="top">BUFG_SUB_TILE_0.I1 BUFG_SUB_TILE_0.I0 BUFG_SUB_TILE_0.
→˓CE0 BUFG_SUB_TILE_0.S0 BUFG_SUB_TILE_0.IGNORE1 BUFG_SUB_TILE_0.CE1 BUFG_SUB_TILE_0.
→˓IGNORE0 BUFG_SUB_TILE_0.S1</loc>

<loc side="right">BUFG_SUB_TILE_0.I1 BUFG_SUB_TILE_0.I0 BUFG_SUB_TILE_
→˓0.O</loc>

</pinlocations>
<equivalent_sites>
<site pb_type="BUFGCTRL" pin_mapping="direct"/>

</equivalent_sites>
</sub_tile>
<sub_tile name="BUFG_SUB_TILE_1" capacity="14">

<clock name="I0" num_pins="1"/>
<clock name="I1" num_pins="1"/>
<input name="CE0" num_pins="1"/>
<input name="CE1" num_pins="1"/>
<input name="IGNORE0" num_pins="1"/>
<input name="IGNORE1" num_pins="1"/>
<input name="S0" num_pins="1"/>
<input name="S1" num_pins="1"/>
<output name="O" num_pins="1"/>
<fc in_type="abs" in_val="2" out_type="abs" out_val="2"/>
<pinlocations pattern="custom">

<loc side="top">BUFG_SUB_TILE_1.S1 BUFG_SUB_TILE_1.I0 BUFG_SUB_TILE_1.
→˓CE1 BUFG_SUB_TILE_1.I1 BUFG_SUB_TILE_1.IGNORE1 BUFG_SUB_TILE_1.IGNORE0 BUFG_SUB_
→˓TILE_1.CE0 BUFG_SUB_TILE_1.S0</loc>

<loc side="right">BUFG_SUB_TILE_1.I0 BUFG_SUB_TILE_1.I1 BUFG_SUB_TILE_
→˓1.O</loc>

</pinlocations>
<equivalent_sites>
<site pb_type="BUFGCTRL" pin_mapping="direct"/>

</equivalent_sites>
</sub_tile>
<sub_tile name="BUFG_SUB_TILE_2" capacity="1">

<clock name="I0" num_pins="1"/>
<clock name="I1" num_pins="1"/>
<input name="CE0" num_pins="1"/>

(continues on next page)
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Fig. 8.14: Simplified view of the Clock tile of the Xilinx Series 7 fabric.
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<input name="CE1" num_pins="1"/>
<input name="IGNORE0" num_pins="1"/>
<input name="IGNORE1" num_pins="1"/>
<input name="S0" num_pins="1"/>
<input name="S1" num_pins="1"/>
<output name="O" num_pins="1"/>
<fc in_type="abs" in_val="2" out_type="abs" out_val="2"/>
<pinlocations pattern="custom">

<loc side="right">BUFG_SUB_TILE_2.S1 BUFG_SUB_TILE_2.I0 BUFG_SUB_TILE_
→˓2.CE1 BUFG_SUB_TILE_2.I1 BUFG_SUB_TILE_2.IGNORE1 BUFG_SUB_TILE_2.IGNORE0 BUFG_SUB_
→˓TILE_2.CE0 BUFG_SUB_TILE_2.S0</loc>

<loc side="left">BUFG_SUB_TILE_2.I0 BUFG_SUB_TILE_2.I1 BUFG_SUB_TILE_
→˓2.O</loc>

</pinlocations>
<equivalent_sites>
<site pb_type="BUFGCTRL" pin_mapping="direct"/>

</equivalent_sites>
</sub_tile>

</tile>
</tiles>

<complexblocklist>
<pb_type name="BUFGCTRL"/>

<clock name="I0" num_pins="1"/>
<clock name="I1" num_pins="1"/>
<input name="CE0" num_pins="1"/>
<input name="CE1" num_pins="1"/>
<input name="IGNORE0" num_pins="1"/>
<input name="IGNORE1" num_pins="1"/>
<input name="S0" num_pins="1"/>
<input name="S1" num_pins="1"/>
<output name="O" num_pins="1"/>

</pb_type>
</complexblocklist>

The above BUFG_TILE contains three types of sub-tiles (BUFG_SUB_TILE_0, BUFG_SUB_TILE_1 and
BUFG_SUB_TILE_2).

While each sub-tile type contains the same pb_type (equivalent_sites of BUFGCTRL), they differ in two ways:

1. Each sub-tile has different pin locations. For example BUFG_SUB_TILE_0 has the I1 pins on the top side of
the tile, while BUFG_SUB_TILE_1 and BUFG_SUB_TILE_2 have them on the right and left sides respec-
tively.

2. Each sub-tile has a different ‘capacity’ (i.e. a different number of sites). BUFG_SUB_TILE_1 and
BUFG_SUB_TILE_2 have capacity 1, while BUFG_SUB_TILE_1 has capacity 14. As a result the
BUFG_TILE can implement a total of 16 BUFGCTRL blocks.
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Sub-tiles containing different block types

As another example taken from the Xilinx Series 7 fabric, the HCLK_IOI tile is composed of three different block
types, namely BUFIO, BUFR and IDELAYCTRL.

Fig. 8.15: Simplified view of the HCLK_IOI tile in the Xilinx Series 7 fabric.

The reader might think that it is possible to model this situation using the Complex Blocks to model this situation, with
a <pb_type> containing the various blocks.

Indeed, this could be done, but, for some architectures, the placement location of a sub block is particularly relevant,
hence the need of leaving this choice to the placement algorithm instead of the packer one.

Each one of these site types has different IO pins as well as pin locations.

<tile name="HCLK_IOI">
<sub_tile name="BUFIO" capacity="4">

<clock name="I" num_pins="1"/>
<output name="O" num_pins = "1"/>
<equivalent_sites>

<site pb_type="BUFIO_SITE" pin_mapping="direct"/>
</equivalent_sites>
<fc />
<pinlocations />

</sub_tile>
<sub_tile name="BUFR" capacity="4">

<clock name="I" num_pins="1"/>
<input name="CE" num_pins="1"/>
<output name="O" num_pins = "1"/>
<equivalent_sites>

<site pb_type="BUFR_SITE" pin_mapping="direct"/>
</equivalent_sites>
<fc />
<pinlocations />

</sub_tile>
<sub_tile name="IDELAYCTRL" capacity="1">

<clock name="REFCLK" num_pins="1"/>
<output name="RDY" num_pins="1"/>
<equivalent_sites>

<site pb_type="IDELAYCTRL_SITE" pin_mapping="direct"/>
(continues on next page)
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</equivalent_sites>
<fc />
<pinlocations />

</sub_tile>
</tile>

Each HCLK_IOI tile contains three sub-tiles, each containing a different type of pb_type:

• the BUFIO sub-tile supports 4 instances (capacity = 4) of pb_type BUFIO_SITE

• the BUFR sub-tile supports 4 instances of BUFR_SITE pb_types

• the IDELAYCTRL sub-tile supports 1 instances of the IDELAYCTRL_SITE

Modeling Guides:

8.2.10 Primitive Block Timing Modeling Tutorial

To accurately model an FPGA, the architect needs to specify the timing characteristics of the FPGA’s primitives blocks.
This involves two key steps:

1. Specifying the logical timing characteristics of a primitive including:

• whether primitive pins are sequential or combinational, and

• what the timing dependencies are between the pins.

2. Specifying the physical delay values

These two steps separate the logical timing characteristics of a primitive, from the physically dependant delays. This
enables a single logical netlist primitive type (e.g. Flip-Flop) to be mapped into different physical locations with
different timing characteristics.

The FPGA architecture description describes the logical timing characteristics in the models section, while the physical
timing information is specified on pb_types within complex block.

The following sections illustrate some common block timing modeling approaches.

Combinational block

A typical combinational block is a full adder,

sum

cin

b

a

cout

Fig. 8.16: Full Adder

where a, b and cin are combinational inputs, and sum and cout are combinational outputs.
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We can model these timing dependencies on the model with the combinational_sink_ports, which specifies
the output ports which are dependant on an input port:

<model name="adder">
<input_ports>
<port name="a" combinational_sink_ports="sum cout"/>
<port name="b" combinational_sink_ports="sum cout"/>
<port name="cin" combinational_sink_ports="sum cout"/>

</input_ports>
<output_ports>
<port name="sum"/>
<port name="cout"/>

</output_ports>
</model>

The physical timing delays are specified on any pb_type instances of the adder model. For example:

<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sum" num_pins="1"/>

<delay_constant max="300e-12" in_port="adder.a" out_port="adder.sum"/>
<delay_constant max="300e-12" in_port="adder.b" out_port="adder.sum"/>
<delay_constant max="300e-12" in_port="adder.cin" out_port="adder.sum"/>
<delay_constant max="300e-12" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="300e-12" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="10e-12" in_port="adder.cin" out_port="adder.cout"/>

</pb_type>

specifies that all the edges of 300ps delays, except to cin to cout edge which has a delay of 10ps.

Sequential block (no internal paths)

A typical sequential block is a D-Flip-Flop (DFF). DFFs have no internal timing paths between their input and output
ports.

Note: If you are using BLIF’s .latch directive to represent DFFs there is no need to explicitly provide a <model>
definition, as it is supported by default.

Sequential model ports are specified by providing the clock="<name>" attribute, where <name> is the name of
the associated clock ports. The assoicated clock port must have is_clock="1" specified to indicate it is a clock.

<model name="dff">
<input_ports>
<port name="d" clock="clk"/>
<port name="clk" is_clock="1"/>

</input_ports>
<output_ports>
<port name="q" clock="clk"/>

</output_ports>
</model>
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D Q

clk

Tsu Tcq

Fig. 8.17: DFF

The physical timing delays are specified on any pb_type instances of the model. In the example below the setup-time
of the input is specified as 66ps, while the clock-to-q delay of the output is set to 124ps.

<pb_type name="ff" blif_model=".subckt dff" num_pb="1">
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<clock name="clk" num_pins="1"/>

<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>

</pb_type>

Mixed Sequential/Combinational Block

It is possible to define a block with some sequential ports and some combinational ports.

In the example below, the single_port_ram_mixed has sequential input ports: we, addr and data (which are
controlled by clk).

However the output port (out) is a combinational output, connected internally to the we, addr and data input
registers.

<model name="single_port_ram_mixed">
<input_ports>
<port name="we" clock="clk" combinational_sink_ports="out"/>
<port name="addr" clock="clk" combinational_sink_ports="out"/>
<port name="data" clock="clk" combinational_sink_ports="out"/>
<port name="clk" is_clock="1"/>

</input_ports>
<output_ports>
<port name="out"/>

</output_ports>
</model>

In the pb_type we define the external setup time of the input registers (50ps) as we did for Sequential block (no
internal paths). However, we also specify the following additional timing information:

• The internal clock-to-q delay of the input registers (200ps)

• The combinational delay from the input registers to the out port (800ps)
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data

clk

addr

we

out

Fig. 8.18: Mixed sequential/combinational single port ram

<pb_type name="mem_sp" blif_model=".subckt single_port_ram_mixed" num_pb="1">
<input name="addr" num_pins="9"/>
<input name="data" num_pins="64"/>
<input name="we" num_pins="1"/>
<output name="out" num_pins="64"/>
<clock name="clk" num_pins="1"/>

<!-- External input register timing -->
<T_setup value="50e-12" port="mem_sp.addr" clock="clk"/>
<T_setup value="50e-12" port="mem_sp.data" clock="clk"/>
<T_setup value="50e-12" port="mem_sp.we" clock="clk"/>

<!-- Internal input register timing -->
<T_clock_to_Q max="200e-12" port="mem_sp.addr" clock="clk"/>
<T_clock_to_Q max="200e-12" port="mem_sp.data" clock="clk"/>
<T_clock_to_Q max="200e-12" port="mem_sp.we" clock="clk"/>

<!-- Internal combinational delay -->
<delay_constant max="800e-12" in_port="mem_sp.addr" out_port="mem_sp.out"/>
<delay_constant max="800e-12" in_port="mem_sp.data" out_port="mem_sp.out"/>
<delay_constant max="800e-12" in_port="mem_sp.we" out_port="mem_sp.out"/>

</pb_type>
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Sequential block (with internal paths)

Some primitives represent more complex architecture primitives, which have timing paths contained completely within
the block.

The model below specifies a sequential single-port RAM. The ports we, addr, and data are sequential inputs, while
the port out is a sequential output. clk is the common clock.

data

clk

addr

we

out

Fig. 8.19: Sequential single port ram

<model name="single_port_ram_seq">
<input_ports>
<port name="we" clock="clk" combinational_sink_ports="out"/>
<port name="addr" clock="clk" combinational_sink_ports="out"/>
<port name="data" clock="clk" combinational_sink_ports="out"/>
<port name="clk" is_clock="1"/>

</input_ports>
<output_ports>
<port name="out" clock="clk"/>

</output_ports>
</model>

Similarly to Mixed Sequential/Combinational Block the pb_type defines the input register timing:

• external input register setup time (50ps)

• internal input register clock-to-q time (200ps)

Since the output port out is sequential we also define the:

• internal output register setup time (60ps)

• external output register clock-to-q time (300ps)

The combinational delay between the input and output registers is set to 740ps.
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Note the internal path from the input to output registers can limit the maximum operating frequency. In this case the
internal path delay is 1ns (200ps + 740ps + 60ps) limiting the maximum frequency to 1 GHz.

<pb_type name="mem_sp" blif_model=".subckt single_port_ram_seq" num_pb="1">
<input name="addr" num_pins="9"/>
<input name="data" num_pins="64"/>
<input name="we" num_pins="1"/>
<output name="out" num_pins="64"/>
<clock name="clk" num_pins="1"/>

<!-- External input register timing -->
<T_setup value="50e-12" port="mem_sp.addr" clock="clk"/>
<T_setup value="50e-12" port="mem_sp.data" clock="clk"/>
<T_setup value="50e-12" port="mem_sp.we" clock="clk"/>

<!-- Internal input register timing -->
<T_clock_to_Q max="200e-12" port="mem_sp.addr" clock="clk"/>
<T_clock_to_Q max="200e-12" port="mem_sp.data" clock="clk"/>
<T_clock_to_Q max="200e-12" port="mem_sp.we" clock="clk"/>

<!-- Internal combinational delay -->
<delay_constant max="740e-12" in_port="mem_sp.addr" out_port="mem_sp.out"/>
<delay_constant max="740e-12" in_port="mem_sp.data" out_port="mem_sp.out"/>
<delay_constant max="740e-12" in_port="mem_sp.we" out_port="mem_sp.out"/>

<!-- Internal output register timing -->
<T_setup value="60e-12" port="mem_sp.out" clock="clk"/>

<!-- External output register timing -->
<T_clock_to_Q max="300e-12" port="mem_sp.out" clock="clk"/>

</pb_type>

Sequential block (with internal paths and combinational input)

A primitive may have a mix of sequential and combinational inputs.

The model below specifies a mostly sequential single-port RAM. The ports addr, and data are sequential inputs,
while the port we is a combinational input. The port out is a sequential output. clk is the common clock.

<model name="single_port_ram_seq_comb">
<input_ports>

<port name="we" combinational_sink_ports="out"/>
<port name="addr" clock="clk" combinational_sink_ports="out"/>
<port name="data" clock="clk" combinational_sink_ports="out"/>
<port name="clk" is_clock="1"/>

</input_ports>
<output_ports>

<port name="out" clock="clk"/>
</output_ports>

</model>

We use register delays similar to Sequential block (with internal paths). However we also specify the purely combina-
tional delay between the combinational we input and sequential output out (800ps). Note that the setup time of the
output register still effects the we to out path for an effective delay of 860ps.

<pb_type name="mem_sp" blif_model=".subckt single_port_ram_seq_comb" num_pb="1">
<input name="addr" num_pins="9"/>

(continues on next page)
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Fig. 8.20: Sequential single port ram with a combinational input

(continued from previous page)

<input name="data" num_pins="64"/>
<input name="we" num_pins="1"/>
<output name="out" num_pins="64"/>
<clock name="clk" num_pins="1"/>

<!-- External input register timing -->
<T_setup value="50e-12" port="mem_sp.addr" clock="clk"/>
<T_setup value="50e-12" port="mem_sp.data" clock="clk"/>

<!-- Internal input register timing -->
<T_clock_to_Q max="200e-12" port="mem_sp.addr" clock="clk"/>
<T_clock_to_Q max="200e-12" port="mem_sp.data" clock="clk"/>

<!-- External combinational delay -->
<delay_constant max="800e-12" in_port="mem_sp.we" out_port="mem_sp.out"/>

<!-- Internal combinational delay -->
<delay_constant max="740e-12" in_port="mem_sp.addr" out_port="mem_sp.out"/>
<delay_constant max="740e-12" in_port="mem_sp.data" out_port="mem_sp.out"/>

<!-- Internal output register timing -->
<T_setup value="60e-12" port="mem_sp.out" clock="clk"/>

<!-- External output register timing -->
<T_clock_to_Q max="300e-12" port="mem_sp.out" clock="clk"/>

</pb_type>
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Multi-clock Sequential block (with internal paths)

It is also possible for a sequential primitive to have multiple clocks.

The following model represents a multi-clock simple dual-port sequential RAM with:

• one write port (addr1 and data1, we1) controlled by clk1, and

• one read port (addr2 and data2) controlled by clk2.

clk2

data2

data1

clk1

addr1

we1

addr2

Fig. 8.21: Multi-clock sequential simple dual port ram

<model name="multiclock_dual_port_ram">
<input_ports>
<!-- Write Port -->
<port name="we1" clock="clk1" combinational_sink_ports="data2"/>
<port name="addr1" clock="clk1" combinational_sink_ports="data2"/>
<port name="data1" clock="clk1" combinational_sink_ports="data2"/>
<port name="clk1" is_clock="1"/>

<!-- Read Port -->
<port name="addr2" clock="clk2" combinational_sink_ports="data2"/>
<port name="clk2" is_clock="1"/>

</input_ports>
<output_ports>
<!-- Read Port -->
<port name="data2" clock="clk2" combinational_sink_ports="data2"/>

</output_ports>
</model>

On the pb_type the input and output register timing is defined similarly to Sequential block (with internal paths),
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except multiple clocks are used.

<pb_type name="mem_dp" blif_model=".subckt multiclock_dual_port_ram" num_pb="1">
<input name="addr1" num_pins="9"/>
<input name="data1" num_pins="64"/>
<input name="we1" num_pins="1"/>
<input name="addr2" num_pins="9"/>
<output name="data2" num_pins="64"/>
<clock name="clk1" num_pins="1"/>
<clock name="clk2" num_pins="1"/>

<!-- External input register timing -->
<T_setup value="50e-12" port="mem_dp.addr1" clock="clk1"/>
<T_setup value="50e-12" port="mem_dp.data1" clock="clk1"/>
<T_setup value="50e-12" port="mem_dp.we1" clock="clk1"/>
<T_setup value="50e-12" port="mem_dp.addr2" clock="clk2"/>

<!-- Internal input register timing -->
<T_clock_to_Q max="200e-12" port="mem_dp.addr1" clock="clk1"/>
<T_clock_to_Q max="200e-12" port="mem_dp.data1" clock="clk1"/>
<T_clock_to_Q max="200e-12" port="mem_dp.we1" clock="clk1"/>
<T_clock_to_Q max="200e-12" port="mem_dp.addr2" clock="clk2"/>

<!-- Internal combinational delay -->
<delay_constant max="740e-12" in_port="mem_dp.addr1" out_port="mem_dp.data2"/>
<delay_constant max="740e-12" in_port="mem_dp.data1" out_port="mem_dp.data2"/>
<delay_constant max="740e-12" in_port="mem_dp.we1" out_port="mem_dp.data2"/>
<delay_constant max="740e-12" in_port="mem_dp.addr2" out_port="mem_dp.data2"/>

<!-- Internal output register timing -->
<T_setup value="60e-12" port="mem_dp.data2" clock="clk2"/>

<!-- External output register timing -->
<T_clock_to_Q max="300e-12" port="mem_dp.data2" clock="clk2"/>

</pb_type>

Clock Generators

Some blocks (such as PLLs) generate clocks on-chip. To ensure that these generated clocks are identified as clock
sources, the associated model output port should be marked with is_clock="1".

As an example consider the following simple PLL model:

<model name="simple_pll">
<input_ports>
<port name="in_clock" is_clock="1"/>

</input_ports>
<output_ports>
<port name="out_clock" is_clock="1"/>

</output_ports>
</model>

The port named in_clock is specified as a clock sink, since it is an input port with is_clock="1" set.

The port named out_clock is specified as a clock generator, since it is an output port with is_clock="1" set.
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Note: Clock generators should not be the combinational sinks of primitive input ports.

Consider the following example netlist:

.subckt simple_pll \
in_clock=clk \
out_clock=clk_pll

Since we have specified that simple_pll.out_clock is a clock generator (see above), the user must specify what
the clock relationship is between the input and output clocks. This information must be either specified in the SDC
file (if no SDC file is specified VPR’s default timing constraints will be used instead).

Note: VPR has no way of determining what the relationship is between the clocks of a black-box primitive.

Consider the case where the simple_pll above creates an output clock which is 2 times the frequency of the input
clock. If the input clock period was 10ns then the SDC file would look like:

create_clock clk -period 10
create_clock clk_pll -period 5 #Twice the frequency of clk

It is also possible to specify in SDC that there is a phase shift between the two clocks:

create_clock clk -waveform {0 5} -period 10 #Equivalent to 'create_clock clk -
→˓period 10'
create_clock clk_pll -waveform {0.2 2.7} -period 5 #Twice the frequency of clk with
→˓a 0.2ns phase shift

Clock Buffers & Muxes

Some architectures contain special primitives for buffering or controling clocks. VTR supports modelling these using
the is_clock attritube on the model to differentiate between ‘data’ and ‘clock’ signals, allowing users to control
how clocks are traced through these primitives.

When VPR traces through the netlist it will propagate clocks from clock inputs to the downstream combinationally
connected pins.

Clock Buffers/Gates

Consider the following black-box clock buffer with an enable:

.subckt clkbufce \
in=clk3 \
enable=clk3_enable \
out=clk3_buf

We wish to have VPR understand that the in port of the clkbufce connects to the out port, and that as a result the
nets clk3 and clk3_buf are equivalent.

This is accomplished by tagging the in port as a clock (is_clock="1"), and combinationally connecting it to the
out port (combinational_sink_ports="out"):
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<model name="clkbufce">
<input_ports>
<port name="in" combinational_sink_ports="out" is_clock="1"/>
<port name="enable" combinational_sink_ports="out"/>

</input_ports>
<output_ports>
<port name="out"/>

</output_ports>
</model>

With the corresponding pb_type:

<pb_type name="clkbufce" blif_model="clkbufce" num_pb="1">
<clock name="in" num_pins="1"/>
<input name="enable" num_pins="1"/>
<output name="out" num_pins="1"/>
<delay_constant max="10e-12" in_port="clkbufce.in" out_port="clkbufce.out"/>
<delay_constant max="5e-12" in_port="clkbufce.enable" out_port="clkbufce.out"/>

</pb_type>

Notably, although the enable port is combinationally connected to the out port it will not be considered as a
potential clock since it is not marked with is_clock="1".

Clock Muxes

Another common clock control block is a clock mux, which selects from one of several potential clocks.

For instance, consider:

.subckt clkmux \
clk1=clka \
clk2=clkb \
sel=select \
clk_out=clk_downstream

which selects one of two input clocks (clk1 and clk2) to be passed through to (clk_out), controlled on the value
of sel.

This could be modelled as:

<model name="clkmux">
<input_ports>
<port name="clk1" combinational_sink_ports="clk_out" is_clock="1"/>
<port name="clk2" combinational_sink_ports="clk_out" is_clock="1"/>
<port name="sel" combinational_sink_ports="clk_out"/>

</input_ports>
<output_ports>
<port name="clk_out"/>

</output_ports>
</model>

<pb_type name="clkmux" blif_model="clkmux" num_pb="1">
<clock name="clk1" num_pins="1"/>
<clock name="clk2" num_pins="1"/>
<input name="sel" num_pins="1"/>
<output name="clk_out" num_pins="1"/>

(continues on next page)
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(continued from previous page)

<delay_constant max="10e-12" in_port="clkmux.clk1" out_port="clkmux.clk_out"/>
<delay_constant max="10e-12" in_port="clkmux.clk2" out_port="clkmux.clk_out"/>
<delay_constant max="20e-12" in_port="clkmux.sel" out_port="clkmux.clk_out"/>

</pb_type>

where both input clock ports clk1 and clk2 are tagged with is_clock="1" and combinationally connected to
the clk_out port. As a result both nets clka and clkb in the netlist would be identified as independent clocks
feeding clk_downstream.

Note: Clock propagation is driven by netlist connectivity so if one of the input clock ports (e.g. clk1) was discon-
nected in the netlist no associated clock would be created/considered.

Clock Mux Timing Constraints

For the clock mux example above, if the user specified the following SDC timing constraints:

create_clock -period 3 clka
create_clock -period 2 clkb

VPR would propagate both clka and clkb through the clock mux. Therefore the logic connected to
clk_downstream would be analyzed for both the clka and clkb constraints.

Most likely (unless clka and clkb are used elswhere) the user should additionally specify:

set_clock_groups -exclusive -group clka -group clkb

Which avoids analyzing paths between the two clocks (i.e. clka -> clkb and clkb -> clka) which are not
physically realizable. The muxing logic means only one clock can drive clk_downstream at any point in time
(i.e. the mux enforces that clka and clkb are mutually exclusive). This is the behaviour of VPR’s default timing
constraints.

8.3 Running the Titan Benchmarks

This tutorial describes how to run the Titan benchmarks with VTR.

8.3.1 Integrating the Titan benchmarks into VTR

The Titan benchmarks take up a large amount of disk space and are not distributed directly with VTR.

The Titan benchmarks can be automatically integrated into the VTR source tree by running the following from the
root of the VTR source tree:

$ make get_titan_benchmarks

which downloads and extracts the benchmarks into the VTR source tree:

Warning: A typical Titan release is a ~1GB download, and uncompresses to ~10GB.
Starting download in 15 seconds...
Downloading http://www.eecg.utoronto.ca/~kmurray/titan/titan_release_1.1.0.tar.gz
......................................................................................
→˓............... (continues on next page)
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Downloading http://www.eecg.utoronto.ca/~kmurray/titan/titan_release_1.1.0.md5
Verifying checksum
OK
Searching release for benchmarks and architectures...
Extracting titan_release_1.1.0/benchmarks/titan23/sparcT2_core/netlists/sparcT2_core_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/sparcT2_core_
→˓stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/LU230/netlists/LU230_stratixiv_arch_
→˓timing.blif to ./vtr_flow/benchmarks/titan_blif/LU230_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/segmentation/netlists/segmentation_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/segmentation_
→˓stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/openCV/netlists/openCV_stratixiv_
→˓arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/openCV_stratixiv_arch_timing.
→˓blif
Extracting titan_release_1.1.0/benchmarks/titan23/bitcoin_miner/netlists/bitcoin_
→˓miner_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/bitcoin_miner_
→˓stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/sparcT1_chip2/netlists/sparcT1_
→˓chip2_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/sparcT1_chip2_
→˓stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/mes_noc/netlists/mes_noc_stratixiv_
→˓arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/mes_noc_stratixiv_arch_timing.
→˓blif
Extracting titan_release_1.1.0/benchmarks/titan23/bitonic_mesh/netlists/bitonic_mesh_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/bitonic_mesh_
→˓stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/dart/netlists/dart_stratixiv_arch_
→˓timing.blif to ./vtr_flow/benchmarks/titan_blif/dart_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/cholesky_bdti/netlists/cholesky_
→˓bdti_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/cholesky_bdti_
→˓stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/stereo_vision/netlists/stereo_
→˓vision_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/stereo_vision_
→˓stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/neuron/netlists/neuron_stratixiv_
→˓arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/neuron_stratixiv_arch_timing.
→˓blif
Extracting titan_release_1.1.0/benchmarks/titan23/gaussianblur/netlists/gaussianblur_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/gaussianblur_
→˓stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/gsm_switch/netlists/gsm_switch_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/gsm_switch_stratixiv_
→˓arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/sparcT1_core/netlists/sparcT1_core_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/sparcT1_core_
→˓stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/des90/netlists/des90_stratixiv_arch_
→˓timing.blif to ./vtr_flow/benchmarks/titan_blif/des90_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/LU_Network/netlists/LU_Network_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/LU_Network_stratixiv_
→˓arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/denoise/netlists/denoise_stratixiv_
→˓arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/denoise_stratixiv_arch_timing.
→˓blif
Extracting titan_release_1.1.0/benchmarks/titan23/stap_qrd/netlists/stap_qrd_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/stap_qrd_stratixiv_
→˓arch_timing.blif (continues on next page)
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Extracting titan_release_1.1.0/benchmarks/titan23/directrf/netlists/directrf_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/directrf_stratixiv_
→˓arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/SLAM_spheric/netlists/SLAM_spheric_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/SLAM_spheric_
→˓stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/minres/netlists/minres_stratixiv_
→˓arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/minres_stratixiv_arch_timing.
→˓blif
Extracting titan_release_1.1.0/benchmarks/titan23/cholesky_mc/netlists/cholesky_mc_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/cholesky_mc_
→˓stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/arch/stratixiv_arch.timing.no_pack_patterns.xml to ./
→˓vtr_flow/arch/titan/stratixiv_arch.timing.no_pack_patterns.xml
Extracting titan_release_1.1.0/arch/stratixiv_arch.timing.xml to ./vtr_flow/arch/
→˓titan/stratixiv_arch.timing.xml
Extracting titan_release_1.1.0/arch/stratixiv_arch.timing.no_directlink.xml to ./vtr_
→˓flow/arch/titan/stratixiv_arch.timing.no_directlink.xml
Extracting titan_release_1.1.0/arch/stratixiv_arch.timing.no_chain.xml to ./vtr_flow/
→˓arch/titan/stratixiv_arch.timing.no_chain.xml
Done
Titan architectures: vtr_flow/arch/titan
Titan benchmarks: vtr_flow/benchmarks/titan_blif

Once completed all the Titan benchmark BLIF netlists can be found under $VTR_ROOT/vtr_flow/
benchmarks/titan_blif, and the Titan architectures under $VTR_ROOT/vtr_flow/arch/titan.

Note: $VTR_ROOT corresponds to the root of the VTR source tree.

8.3.2 Running benchmarks manually

Once the benchmarks have been integrated into VTR they can be run manually.

For example, the follow uses VPR to implement the neuron benchmark onto the startixiv_arch.timing.
xml architecture at a channel width of 300 tracks:

$ vpr $VTR_ROOT/vtr_flow/arch/titan/stratixiv_arch.timing.xml $VTR_ROOT/vtr_flow/
→˓benchmarks/titan_blif/neuron_stratixiv_arch_timing.blif --route_chan_width 300

8.4 Post-Implementation Timing Simulation

This tutorial describes how to simulate a circuit which has been implemented by VPR with back-annotated timing
delays.

Back-annotated timing simulation is useful for a variety of reasons:

• Checking that the circuit logic is correctly implemented

• Checking that the circuit behaves correctly at speed with realistic delays

• Generating VCD (Value Change Dump) files with realistic delays (e.g. for power estimation)
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Fig. 8.22: Timing simulation waveform for stereovision3
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8.4.1 Generating the Post-Implementation Netlist

For the purposes of this tutorial we will be using the stereovision3 benchmark, and will target the
k6_N10_40nm architecture.

First lets create a directory to work in:

$ mkdir timing_sim_tut
$ cd timing_sim_tut

Next we’ll copy over the stereovision3 benchmark netlist in BLIF format and the FPGA architecture description:

$ cp $VTR_ROOT/vtr_flow/benchmarks/vtr_benchmarks_blif/stereovision3.blif .
$ cp $VTR_ROOT/vtr_flow/arch/timing/k6_N10_40nm.xml .

Note: Replace $VTR_ROOT with the root directory of the VTR source tree

Now we can run VPR to implement the circuit onto the k6_N10_40nm architecture. We also need to provide the vpr
--gen_post_synthesis_netlist option to generate the post-implementation netlist and dump the timing
information in Standard Delay Format (SDF):

$ vpr k6_N10_40nm.xml stereovision3.blif --gen_post_synthesis_netlist on

Once VPR has completed we should see the generated verilog netlist and SDF:

$ ls *.v *.sdf
sv_chip3_hierarchy_no_mem_post_synthesis.sdf sv_chip3_hierarchy_no_mem_post_
→˓synthesis.v

8.4.2 Inspecting the Post-Implementation Netlist

Lets take a quick look at the generated files.

First is a snippet of the verilog netlist:

Listing 8.1: Verilog netlist snippet

fpga_interconnect \routing_segment_lut_n616_output_0_0_to_lut_n497_input_0_4 (
.datain(\lut_n616_output_0_0 ),
.dataout(\lut_n497_input_0_4 )

);

//Cell instances
LUT_K #(

.K(6),

.LUT_MASK(64'b0000000000000000000000000000000000100001001000100000000100000010)
) \lut_n452 (

.in({
1'b0,
\lut_n452_input_0_4 ,
\lut_n452_input_0_3 ,
\lut_n452_input_0_2 ,
1'b0,
\lut_n452_input_0_0 }),

.out(\lut_n452_output_0_0 )

(continues on next page)

264 Chapter 8. Tutorials



Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

);

DFF #(
.INITIAL_VALUE(1'b0)

) \latch_top^FF_NODE~387 (
.D(\latch_top^FF_NODE~387_input_0_0 ),
.Q(\latch_top^FF_NODE~387_output_0_0 ),
.clock(\latch_top^FF_NODE~387_clock_0_0 )

);

Here we see three primitives instantiated:

• fpga_interconnect represent connections between netlist primitives

• LUT_K represent look-up tables (LUTs) (corresponding to .names in the BLIF netlist). Two parameters define
the LUTs functionality:

– K the number of inputs, and

– LUT_MASK which defines the logic function.

• DFF represents a D-Flip-Flop (corresponding to .latch in the BLIF netlist).

– The INITIAL_VALUE parameter defines the Flip-Flop’s initial state.

Different circuits may produce other types of netlist primitives corresponding to hardened primitive blocks in the
FPGA such as adders, multipliers and single or dual port RAM blocks.

Note: The different primitives produced by VPR are defined in $VTR_ROOT/vtr_flow/primitives.v

Lets now take a look at the Standard Delay Fromat (SDF) file:

Listing 8.2: SDF snippet

1 (CELL
2 (CELLTYPE "fpga_interconnect")
3 (INSTANCE routing_segment_lut_n616_output_0_0_to_lut_n497_input_0_4)
4 (DELAY
5 (ABSOLUTE
6 (IOPATH datain dataout (312.648:312.648:312.648) (312.648:312.648:312.

→˓648))
7 )
8 )
9 )

10

11 (CELL
12 (CELLTYPE "LUT_K")
13 (INSTANCE lut_n452)
14 (DELAY
15 (ABSOLUTE
16 (IOPATH in[0] out (261:261:261) (261:261:261))
17 (IOPATH in[2] out (261:261:261) (261:261:261))
18 (IOPATH in[3] out (261:261:261) (261:261:261))
19 (IOPATH in[4] out (261:261:261) (261:261:261))
20 )
21 )
22 )

(continues on next page)
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23

24 (CELL
25 (CELLTYPE "DFF")
26 (INSTANCE latch_top\^FF_NODE\~387)
27 (DELAY
28 (ABSOLUTE
29 (IOPATH (posedge clock) Q (124:124:124) (124:124:124))
30 )
31 )
32 (TIMINGCHECK
33 (SETUP D (posedge clock) (66:66:66))
34 )
35 )

The SDF defines all the delays in the circuit using the delays calculated by VPR’s STA engine from the architecture
file we provided.

Here we see the timing description of the cells in Listing 8.1.

In this case the routing segment routing_segment_lut_n616_output_0_0_to_lut_n497_input_0_4
has a delay of 312.648 ps, while the LUT lut_n452 has a delay of 261 ps from each input to the output. The DFF
latch_top\^FF_NODE\~387 has a clock-to-q delay of 124 ps and a setup time of 66ps.

8.4.3 Creating a Test Bench

In order to simulate a benchmark we need a test bench which will stimulate our circuit (the Device-Under-Test or
DUT).

An example test bench which will randomly perturb the inputs is shown below:

Listing 8.3: The test bench tb.sv.

1 `timescale 1ps/1ps
2 module tb();
3

4 localparam CLOCK_PERIOD = 8000;
5 localparam CLOCK_DELAY = CLOCK_PERIOD / 2;
6

7 //Simulation clock
8 logic sim_clk;
9

10 //DUT inputs
11 logic \top^tm3_clk_v0 ;
12 logic \top^tm3_clk_v2 ;
13 logic \top^tm3_vidin_llc ;
14 logic \top^tm3_vidin_vs ;
15 logic \top^tm3_vidin_href ;
16 logic \top^tm3_vidin_cref ;
17 logic \top^tm3_vidin_rts0 ;
18 logic \top^tm3_vidin_vpo~0 ;
19 logic \top^tm3_vidin_vpo~1 ;
20 logic \top^tm3_vidin_vpo~2 ;
21 logic \top^tm3_vidin_vpo~3 ;
22 logic \top^tm3_vidin_vpo~4 ;
23 logic \top^tm3_vidin_vpo~5 ;
24 logic \top^tm3_vidin_vpo~6 ;

(continues on next page)
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25 logic \top^tm3_vidin_vpo~7 ;
26 logic \top^tm3_vidin_vpo~8 ;
27 logic \top^tm3_vidin_vpo~9 ;
28 logic \top^tm3_vidin_vpo~10 ;
29 logic \top^tm3_vidin_vpo~11 ;
30 logic \top^tm3_vidin_vpo~12 ;
31 logic \top^tm3_vidin_vpo~13 ;
32 logic \top^tm3_vidin_vpo~14 ;
33 logic \top^tm3_vidin_vpo~15 ;
34

35 //DUT outputs
36 logic \top^tm3_vidin_sda ;
37 logic \top^tm3_vidin_scl ;
38 logic \top^vidin_new_data ;
39 logic \top^vidin_rgb_reg~0 ;
40 logic \top^vidin_rgb_reg~1 ;
41 logic \top^vidin_rgb_reg~2 ;
42 logic \top^vidin_rgb_reg~3 ;
43 logic \top^vidin_rgb_reg~4 ;
44 logic \top^vidin_rgb_reg~5 ;
45 logic \top^vidin_rgb_reg~6 ;
46 logic \top^vidin_rgb_reg~7 ;
47 logic \top^vidin_addr_reg~0 ;
48 logic \top^vidin_addr_reg~1 ;
49 logic \top^vidin_addr_reg~2 ;
50 logic \top^vidin_addr_reg~3 ;
51 logic \top^vidin_addr_reg~4 ;
52 logic \top^vidin_addr_reg~5 ;
53 logic \top^vidin_addr_reg~6 ;
54 logic \top^vidin_addr_reg~7 ;
55 logic \top^vidin_addr_reg~8 ;
56 logic \top^vidin_addr_reg~9 ;
57 logic \top^vidin_addr_reg~10 ;
58 logic \top^vidin_addr_reg~11 ;
59 logic \top^vidin_addr_reg~12 ;
60 logic \top^vidin_addr_reg~13 ;
61 logic \top^vidin_addr_reg~14 ;
62 logic \top^vidin_addr_reg~15 ;
63 logic \top^vidin_addr_reg~16 ;
64 logic \top^vidin_addr_reg~17 ;
65 logic \top^vidin_addr_reg~18 ;
66

67 //Instantiate the dut
68 sv_chip3_hierarchy_no_mem dut ( .* );
69

70 //Load the SDF
71 initial $sdf_annotate("sv_chip3_hierarchy_no_mem_post_synthesis.sdf", dut);
72

73 //The simulation clock
74 initial sim_clk = '1;
75 always #CLOCK_DELAY sim_clk = ~sim_clk;
76

77 //The circuit clocks
78 assign \top^tm3_clk_v0 = sim_clk;
79 assign \top^tm3_clk_v2 = sim_clk;
80

81 //Randomized input
(continues on next page)
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82 always@(posedge sim_clk) begin
83 \top^tm3_vidin_llc <= $urandom_range(1,0);
84 \top^tm3_vidin_vs <= $urandom_range(1,0);
85 \top^tm3_vidin_href <= $urandom_range(1,0);
86 \top^tm3_vidin_cref <= $urandom_range(1,0);
87 \top^tm3_vidin_rts0 <= $urandom_range(1,0);
88 \top^tm3_vidin_vpo~0 <= $urandom_range(1,0);
89 \top^tm3_vidin_vpo~1 <= $urandom_range(1,0);
90 \top^tm3_vidin_vpo~2 <= $urandom_range(1,0);
91 \top^tm3_vidin_vpo~3 <= $urandom_range(1,0);
92 \top^tm3_vidin_vpo~4 <= $urandom_range(1,0);
93 \top^tm3_vidin_vpo~5 <= $urandom_range(1,0);
94 \top^tm3_vidin_vpo~6 <= $urandom_range(1,0);
95 \top^tm3_vidin_vpo~7 <= $urandom_range(1,0);
96 \top^tm3_vidin_vpo~8 <= $urandom_range(1,0);
97 \top^tm3_vidin_vpo~9 <= $urandom_range(1,0);
98 \top^tm3_vidin_vpo~10 <= $urandom_range(1,0);
99 \top^tm3_vidin_vpo~11 <= $urandom_range(1,0);

100 \top^tm3_vidin_vpo~12 <= $urandom_range(1,0);
101 \top^tm3_vidin_vpo~13 <= $urandom_range(1,0);
102 \top^tm3_vidin_vpo~14 <= $urandom_range(1,0);
103 \top^tm3_vidin_vpo~15 <= $urandom_range(1,0);
104 end
105

106 endmodule

The testbench instantiates our circuit as dut at line 69. To load the SDF we use the $sdf_annotate() system
task (line 72) passing the SDF filename and target instance. The clock is defined on lines 75-76 and the random circuit
inputs are generated at the rising edge of the clock on lines 84-104.

8.4.4 Performing Timing Simulation in Modelsim

To perform the timing simulation we will use Modelsim, an HDL simulator from Mentor Graphics.

Note: Other simulators may use different commands, but the general approach will be similar.

It is easiest to write a tb.do file to setup and configure the simulation:

Listing 8.4: Modelsim do file tb.do. Note that $VTR_ROOT should be
replaced with the relevant path.

1 #Enable command logging
2 transcript on
3

4 #Setup working directories
5 if {[file exists gate_work]} {
6 vdel -lib gate_work -all
7 }
8 vlib gate_work
9 vmap work gate_work

10

11 #Load the verilog files
12 vlog -sv -work work {sv_chip3_hierarchy_no_mem_post_synthesis.v}
13 vlog -sv -work work {tb.sv}

(continues on next page)
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14 vlog -sv -work work {$VTR_ROOT/vtr_flow/primitives.v}
15

16 #Setup the simulation
17 vsim -t 1ps -L gate_work -L work -voptargs="+acc" +sdf_verbose +bitblast tb
18

19 #Log signal changes to a VCD file
20 vcd file sim.vcd
21 vcd add /tb/dut/*
22 vcd add /tb/dut/*
23

24 #Setup the waveform viewer
25 log -r /tb/*
26 add wave /tb/*
27 view structure
28 view signals
29

30 #Run the simulation for 1 microsecond
31 run 1us -all

We link together the post-implementation netlist, test bench and VTR primitives on lines 12-14. The simulation is
then configured on line 17, some of the options are worth discussing in more detail:

• +bitblast: Ensures Modelsim interprets the primitives in primitives.v correctly for SDF back-
annotation.

Warning: Failing to provide +bitblast can cause errors during SDF back-annotation

• +sdf_verbose: Produces more information about SDF back-annotation, useful for verifying that back-
annotation succeeded.

Lastly, we tell the simulation to run on line 31.

Now that we have a .do file, lets launch the modelsim GUI:

$ vsim

and then run our .do file from the internal console:

ModelSim> do tb.do

Once the simulation completes we can view the results in the waveform view as shown in at the top of the page, or
process the generated VCD file sim.vcd.
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CHAPTER

NINE

UTILITIES

9.1 FPGA Assembly (FASM) Output Support

After VPR has generated a placed and routed design, the genfasm utility can emit a FASM file to represent the design
at a level detailed enough to allow generation of a bitstream to program a device. This FASM output file is enabled by
FASM metadata encoded in the VPR architecture definition and routing graph. The output FASM file can be converted
into a bitstream format suitable to program the target architecture via architecture specific tooling. Current devices
that can be programmed using the vpr + fasm flow include Lattice iCE40 and Xilinx Artix-7 devices, with work on
more devices underway. More information on supported devices is available from the Symbiflow website.

9.1.1 FASM metadata

The genfasm utility uses metadata blocks (see Architecture metadata) attached to the architecture definition and
routing graph to emit FASM features. By adding FASM specific metadata to both the architecture definition and the
routing graph, a FASM file that represents the place and routed design can be generated.

All metadata tags are ignored when packing, placing and routing. After VPR has been completed placement,
genfasm utility loads the VPR output files (.net, .place, .route) and then uses the FASM metadata to emit a FASM
file. The following metadata “keys” are recognized by genfasm:

• “fasm_prefix”

• “fasm_features”

• “fasm_type” and “fasm_lut”

• “fasm_mux”

• “fasm_params”

9.1.2 Invoking genfasm

genfasm expects that place and route on the design is completed (e.g. .net, .place, .route files are present), so ensure
that routing is complete before executing genfasm. genfasm should be invoked in the same subdirectory as the
routing output. The output FASM file will be written to <blif root>.fasm.
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9.1.3 FASM prefixing

FASM feature names has structure through their prefixes. In general the first part of the FASM feature is the location
of the feature, such as the name of the tile the feature is located in, e.g. INT_L_X5Y6 or CLBLL_L_X10Y12. The
next part is typically an identifier within the tile. For example a CLBLL tile has two slices, so the next part of the
FASM feature name is the slice identifier, e.g. SLICE_X0 or SLICE_X1.

Now consider the CLBLL_L pb_type. This pb_type is repeated in the grid for each tile of that type. To allow one
pb_type definition to be defined, the “fasm_prefix” metadata tag is allowed to be attached at the layout level on the
<single> tag. This enables the same pb_type to be used for all CLBLL_L tiles, and the “fasm_prefix” is prepended to
all FASM metadata within that pb_type. For example:

<single priority="1" type="BLK_TI-CLBLL_L" x="35" y="51">
<metadata>
<meta name="fasm_prefix">CLBLL_L_X12Y100</meta>

</metadata>
</single>
<single priority="1" type="BLK_TI-CLBLL_L" x="35" y="50">
<metadata>
<meta name="fasm_prefix">CLBLL_L_X12Y101</meta>

</metadata>
</single>

“fasm_prefix” tags can also be used within a pb_type to handle repeated features. For example in the CLB, there are 4
LUTs that can be described by a common pb_type, except that the prefix changes for each. For example, consider the
FF’s within a CLB. There are 8 FF’s that share a common structure, except for a prefix change. “fasm_prefix” can be a
space separated list to assign prefixes to the index of the pb_type, rather than needing to emit N copies of the pb_type
with varying prefixes.

<pb_type name="BEL_FF-FDSE_or_FDRE" num_pb="8">
<input name="D" num_pins="1"/>
<input name="CE" num_pins="1"/>
<clock name="C" num_pins="1"/>
<input name="SR" num_pins="1"/>
<output name="Q" num_pins="1"/>
<metadata>
<meta name="fasm_prefix">AFF BFF CFF DFF A5FF B5FF C5FF D5FF</meta>

</metadata>
</pb_type>

Construction of the prefix

“fasm_prefix” is accumulated throughout the structure of the architecture definition. Each “fasm_prefix” is joined
together with a period (‘.’), and then a period is added after the prefix before the FASM feature name.
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9.1.4 Simple FASM feature emissions

In cases where a FASM feature needs to be emitted simply via use of a pb_type, the “fasm_features” tag can be used.
If the pb_type (or mode) is selected, then all “fasm_features” in the metadata will be emitted. Multiple features can be
listed, whitespace separated. Example:

<metadata>
<meta name="fasm_features">ZRST</meta>

</metadata>

The other place that “fasm_features” is used heavily is on <edge> tags in the routing graph. If an edge is used in the
final routed design, “genfasm” will emit features attached to the edge. Example:

<edge sink_node="431195" src_node="418849" switch_id="0">
<metadata>
<meta name="fasm_features">HCLK_R_X58Y130.HCLK_LEAF_CLK_B_TOP4.HCLK_CK_BUFHCLK7

→˓HCLK_R_X58Y130.ENABLE_BUFFER.HCLK_CK_BUFHCLK7</meta>
</metadata>

</edge>

In this example, when the routing graph connects node 418849 to 431195, two FASM features will be emitted:

• HCLK_R_X58Y130.HCLK_LEAF_CLK_B_TOP4.HCLK_CK_BUFHCLK7

• HCLK_R_X58Y130.ENABLE_BUFFER.HCLK_CK_BUFHCLK7

9.1.5 Emitting LUTs

LUTs are a structure that is explicitly understood by VPR. In order to emit LUTs, two metadata keys must be used,
“fasm_type” and “fasm_lut”. “fasm_type” must be either “LUT” or “SPLIT_LUT”. The “fasm_type” modifies how
the “fasm_lut” key is interpreted. If the pb_type that the metadata is attached to has no “num_pb” or “num_pb” equals
1, then “fasm_type” can be “LUT”. “fasm_lut” is then the feature that represents the LUT table storage features,
example:

<metadata>
<meta name="fasm_type">LUT</meta>
<meta name="fasm_lut">
ALUT.INIT[63:0]

</meta>
</metadata>

FASM LUT metadata must be attached to the <pb_type> at or within the <mode> tag directly above the
<pb_type> with blif_model=".names". Do note that there is an implicit <mode> tag within intermediate
<pb_type> when no explicit <mode> tag is present. The FASM LUT metadata tags will not be recognized attached
inside of <pb_type>’s higher above the leaf type.

When specifying a FASM features with more than one bit, explicitly specify the bit range being set. This is required
because “genfasm” does not have access to the actual bit database, and would otherwise not have the width of the
feature.

When “fasm_type” is “SPLIT_LUT”, “fasm_lut” must specify both the feature that represents the LUT table storage
features and the pb_type path to the LUT being specified. Example:

<metadata>
<meta name="fasm_type">SPLIT_LUT</meta>
<meta name="fasm_lut">
ALUT.INIT[31:0] = BEL_LT-A5LUT[0]

(continues on next page)
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(continued from previous page)

ALUT.INIT[63:32] = BEL_LT-A5LUT[1]
</meta>

</metadata>

In this case, the LUT in pb_type BEL_LT-A5LUT[0] will use INIT[31:0], and the LUT in pb_type BEL_LT-A5LUT[1]
will use INIT[63:32].

9.1.6 Within tile interconnect features

When a tile has interconnect feature, e.g. output muxes, the “fasm_mux” tag should be attached to the interconnect
tag, likely the <direct> or <mux> tags. From the perspective of genfasm, the <direct> and <mux> tags are
equivalent. The syntax for the “fasm_mux” newline separated relationship between mux input wire names and FASM
features. Example:

<mux name="D5FFMUX" input="BLK_IG-COMMON_SLICE.DX BLK_IG-COMMON_SLICE.DO5" output=
→˓"BLK_BB-SLICE_FF.D5[3]" >
<metadata>
<meta name="fasm_mux">
BLK_IG-COMMON_SLICE.DO5 : D5FFMUX.IN_A
BLK_IG-COMMON_SLICE.DX : D5FFMUX.IN_B

</meta>
</metadata>

</mux>

The above mux connects input BLK_IG-COMMON_SLICE.DX or BLK_IG-COMMON_SLICE.DO5 to BLK_BB-
SLICE_FF.D5[3]. When VPR selects BLK_IG-COMMON_SLICE.DO5 for the mux, “genfasm” will emit
D5FFMUX.IN_A, etc.

There is not a requirement that all inputs result in a feature being set. In cases where some mux selections result in no
feature being set, use “NULL” as the feature name. Example:

<mux name="CARRY_DI3" input="BLK_IG-COMMON_SLICE.DO5 BLK_IG-COMMON_SLICE.DX" output=
→˓"BEL_BB-CARRY[2].DI" >
<metadata>
<meta name="fasm_mux">
BLK_IG-COMMON_SLICE.DO5 : CARRY4.DCY0
BLK_IG-COMMON_SLICE.DX : NULL

</meta>
</metadata>

</mux>

The above examples all used the <mux> tag. The “fasm_mux” metadata key can also be used with the <direct>
tag in the same way, example:

<direct name="WA7" input="BLK_IG-SLICEM.CX" output="BLK_IG-SLICEM_MODES.WA7">
<metadata>
<meta name="fasm_mux">
BLK_IG-SLICEM.CX = WA7USED

</meta>
</metadata>

</direct>

If multiple FASM features are required for a mux, they can be specified using comma’s as a seperator. Example:
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<mux name="D5FFMUX" input="BLK_IG-COMMON_SLICE.DX BLK_IG-COMMON_SLICE.DO5" output=
→˓"BLK_BB-SLICE_FF.D5[3]" >
<metadata>
<meta name="fasm_mux">
BLK_IG-COMMON_SLICE.DO5 : D5FFMUX.IN_A
BLK_IG-COMMON_SLICE.DX : D5FFMUX.IN_B, D5FF.OTHER_FEATURE

</meta>
</metadata>

</mux>

9.1.7 Passing parameters through to the FASM Output

In many cases there are parameters that need to be passed directly from the input Extended BLIF (.eblif) to the FASM
file. These can be passed into a FASM feature via the “fasm_params” key. Note that care must be taken to have the
“fasm_params” metadata be attached to pb_type that the packer uses, the pb_type with the blif_model= “.subckt”.

The “fasm_params” value is a newline separated list of FASM features to eblif parameters. Example:

<metadata>
<meta name="fasm_params">
INIT[31:0] = INIT_00
INIT[63:32] = INIT_01

</meta>
</metadata>

The FASM feature is on the left hand side of the equals. When setting a parameter with multiple bits, the bit range
must be specified. If the parameter is a single bit, the bit range is not required, but can be supplied for clarity. The
right hand side is the parameter name from eblif. If the parameter name is not found in the eblif, that FASM feature
will not be emitted.

No errors or warnings will be generated for unused parameters from eblif or unused mappings between eblif parameters
and FASM parameters to allow for flexibility in the synthesis output. This does mean it is important to check spelling
of the metadata, and create tests that the mapping is working as expected.

Also note that “genfasm” will not accept “x” (unknown/don’t care) or “z” (high impedence) values in parameters.
Prior to emitting the eblif for place and route, ensure that all parameters that will be mapped to FASM have a valid “1”
or “0”.

9.2 Router Diagnosis Tool

The Router Diagnosis tool (route_diag) is an utility that helps developers understand the issues related to the
routing phase of VPR. Instead of running the whole routing step, route_diag performs one step of routing, aimed
at analyzing specific connections between a SINK/SOURCE nodes pair. Moreover, it is able also to profile all the
possible paths of a given SOURCE node.

To correctly run the utility tool, the user needs to compile VTR with the VTR_ENABLE_DEBUG_LOGGING set to
ON and found in the CMakeLists.txt configuration file.

The tool is compiled with all the other targets when running the full build of VtR. It is also possible, though, to build
the route_diag utility standalone, by running the following command:

make route_diag

To use the Route Diagnosis tool, the users has different parameters at disposal:
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--sink_rr_node <int>
Specifies the SINK RR NODE part of the pair that needs to be analyzed

--source_rr_node <int>
Specifies the SOURCE RR NODE part of the pair that needs to be analyzed

--router_debug_sink_rr <int>
Controls when router debugging is enabled for the specified sink RR.

• For values >= 0, the value is taken as the sink RR Node ID for which to enable router debug output.
• For values < 0, sink-based router debug output is disabled.

The Router Diagnosis tool must be provided at least with the RR GRAPH and the architecture description file to
correctly function.

276 Chapter 9. Utilities



CHAPTER

TEN

DEVELOPER GUIDE

10.1 Contribution Guidelines

Thanks for considering contributing to VTR! Here are some helpful guidelines to follow.

10.1.1 Common Scenarios

I have a question

If you have questions about VTR take a look at our Support Resources.

If the answer to your question wasn’t in the documentation (and you think it should have been), consider enhancing
the documentation. That way someone (perhaps your future self!) will be able to quickly find the answer in the future.

I found a bug!

While we strive to make VTR reliable and robust, bugs are inevitable in large-scale software projects.

Please file a detailed bug report. This ensures we know about the problem and can work towards fixing it.

It would be great if VTR supported . . .

VTR has many features and is highly flexible. Make sure you’ve checkout out all our Support Resources to see if VTR
already supports what you want.

If VTR does not support your use case, consider filling an enhancement.

I have a bug-fix/feature I’d like to include in VTR

Great! Submitting bug-fixes and features is a great way to improve VTR. See the guidlines for submitting code.
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10.1.2 The Details

Enhancing Documentation

Enhancing documentation is a great way to start contributing to VTR.

You can edit the documentation directly by clicking the Edit on GitHub link of the relevant page, or by editing
the re-structured text (.rst) files under doc/src.

Generally it is best to make small incremental changes. If you are considering larger changes its best to discuss them
first (e.g. file a bug or enhancement).

Once you’ve made your enhancements open a pull request to get your changes considered for inclusion in the docu-
mentation.

Filling Bug Reports

First, search for existing issues to see if the bug has already been reported.

If no bug exists you will need to collect key pieces of information. This information helps us to quickly reproduce
(and hopefully fix) the issue:

• What behaviour you expect

How you think VTR should be working.

• What behaviour you are seeing

What VTR actually does on your system.

• Detailed steps to re-produce the bug

This is key to getting your bug fixed.

Provided detailed steps to reproduce the bug, including the exact commands to reproduce the bug. Attach all
relevant files (e.g. FPGA architecture files, benchmark circuits, log files).

If we can’t re-produce the issue it is very difficult to fix.

• Context about what you are trying to achieve

Sometimes VTR does things in a different way than you expect. Telling us what you are trying to accomplish
helps us to come up with better real-world solutions.

• Details about your environment

Tell us what version of VTR you are using (e.g. the output of vpr --version), which Operating System and
compiler you are using, or any other relevant information about where or how you are building/running VTR.

Once you’ve gathered all the information open an Issue on our issue tracker.

If you know how to fix the issue, or already have it coded-up, please also consider submitting the fix. This is likely the
fastest way to get bugs fixed!
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Filling Enhancement Requests

First, search existing issues to see if your enhancement request overlaps with an existing Issue.

If not feature request exists you will need to describe your enhancement:

• New behaviour

How your proposed enhancement will work (from a user’s perspective).

• Contrast with current behaviour

How will your enhancement differ from the current behaviour (from a user’s perspective).

• Potential Implementation

Describe (if you have some idea) how the proposed enhancement would be implemented.

• Context

What is the broader goal you are trying to accomplish? How does this enhancement help? This allows us to
understand why this enhancement is beneficial, and come up with the best real-world solution.

VTR developers have limited time and resources, and will not be able to address all feature requests. Typically,
simple enhancements, and those which are broadly useful to a wide group of users get higher priority.

Features which are not generally useful, or useful to only a small group of users will tend to get lower priority. (Of
course coding the enhancement yourself is an easy way to bypass this challenge).

Once you’ve gathered all the information open an Issue on our issue tracker.

Submitting Code to VTR

VTR welcomes external contributions.

In general changes that are narrowly focused (e.g. small bug fixes) are easier to review and include in the code base.

Large changes, such as substantial new features or significant code-refactoring are more challenging to review. It is
probably best to file an enhancement first to discuss your approach.

Additionally, new features which are generally useful are much easier to justify adding to the code base, whereas
features useful in only a few specialized cases are more difficult to justify.

Once your fix/enahcement is ready to go, start a pull request.

Making Pull Requests

It is assumed that by opening a pull request to VTR you have permission to do so, and the changes are under the
relevant License. VTR does not require a Contributor License Agreement (CLA) or formal Developer Certificate of
Origin (DCO) for contributions.

Each pull request should describe it’s motivation and context (linking to a relevant Issue for non-trivial changes).

Code-changes should also describe:

• The type of change (e.g. bug-fix, feature)

• How it has been tested

• What tests have been added

All new features must have tests added which exercise the new features. This ensures any future changes which
break your feature will be detected. It is also best to add tests when fixing bugs, for the same reason
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See Adding Tests for details on how to create new regression tests. If you aren’t sure what tests are needed, ask
a maintainer.

• How the feature has been documented

Any new user-facing features should be documented in the public documentation, which is in .rst format
under doc/src, and served at https://docs.verilogtorouting.org

Once everything is ready create a pull request.

Tips for Pull Requests The following are general tips for making your pull requests easy to review (and hence more
likely to be merged):

• Keep changes small

Large change sets are difficult and time-consuming to review. If a change set is becoming too large, consider
splitting it into smaller pieces; you’ll probably want to file an issue to discuss things first.

• Do one thing only

All the changes and commits in your pull request should be relevant to the bug/feature it addresses. There should
be no unrelated changes (e.g. adding IDE files, re-formatting unchanged code).

Unrelated changes make it difficult to accept a pull request, since it does more than what the pull request
described.

• Match existing code style When modifying existing code, try match the existing coding style. This helps to keep
the code consistent and reduces noise in the pull request (e.g. by avoiding re-formatting changes), which makes
it easier to review and more likely to be merged.

10.2 Commit Procedures

For general guidance on contributing to VTR see Submitting Code to VTR.

The actual machanics of submitting code are outlined below.

However they differ slightly depending on whether you are:

• an internal developer (i.e. you have commit access to the main VTR repository at github.com/
verilog-to-routing/vtr-verilog-to-routing) or,

• an (external developer) (i.e. no commit access).

The overall approach is similar, but we call out the differences below.

1. Setup a local repository on your development machine.

a. External Developers

• Create a ‘fork’ of the VTR repository.

Usually this is done on GitHub, giving you a copy of the VTR repository (i.e. github.com/
<username>/vtr-verilog-to-routing, where <username> is your GitHub username) to
which you have commit rights. See About forks in the GitHub documentation.

• Clone your ‘fork’ onto your local machine.

For example, git clone git@github.com:<username>/vtr-verilog-to-routing.
git, where <username> is your GitHub username.

b. Internal Developers
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• Clone the main VTR repository onto your local machine.

For example, git clone git@github.com:verilog-to-routing/
vtr-verilog-to-routing.git.

2. Move into the cloned repository.

For example, cd vtr-verilog-to-routing.

3. Create a branch, based off of master to work on.

For example, git checkout -b my_awesome_branch master, where my_awesome_branch is
some helpful (and descriptive) name you give you’re branch. Please try to pick descriptive branch names!

4. Make your changes to the VTR code base.

5. Test your changes to ensure they work as intended and have not broken other features.

At the bare minimum it is recommended to run:

make #Rebuild the code
./run_reg_test.pl vtr_reg_basic vtr_reg_strong #Run tests

See Running Tests for more details.

Also note that additional code formatting checks, and tests will be run when you open a Pull Request.

6. Commit your changes (i.e. git add followed by git commit).

Please try to use good commit messages!

See Commit Messages and Structure for details.

7. Push the changes to GitHub.

For example, git push origin my_awesome_branch.

a. External Developers

Your code changes will now exist in your branch (e.g. my_awesome_branch) within your
fork (e.g. github.com/<username>/vtr-verilog-to-routing/tree/my_awesome_branch,
where <username> is your GitHub username)

b. Internal Developers

Your code changes will now exist in your branch (e.g. my_awesome_branch) within the main
VTR repository (i.e. github.com/verilog-to-routing/vtr-verilog-to-routing/tree/
my_awesome_branch)

8. Create a Pull Request (PR) to request your changes be merged into VTR.

• Navitage to your branch on GitHub

a. External Developers

Navigate to your branch within your fork on GitHub (e.g. https://github.com/<username/
vtr-verilog-to-routing/tree/my_awesome_branch, where <username> is your
GitHub username, and my_awesome_branch is your branch name).

b. Internal Developers

Navigate to your branch on GitHub (e.g. https://github.com/verilog-to-routing/
vtr-verilog-to-routing/tree/my_awesome_branch, where my_awesome_branch is
your branch name).
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• Select the New pull request button.

a. External Developers

If prompted, select verilog-to-routing/vtr-verilog-to-routing as the base repository.

10.3 Commit Messages and Structure

10.3.1 Commit Messages

Commit messagaes are an important part of understanding the code base and it’s history. It is therefore extremely
important to provide the following information in the commit message:

• What is being changed?

• Why is this change occurring?

The diff of changes included with the commit provides the details of what is actually changed, so only a high-level
description of what is being done is needed. However a code diff provides no insight into why the change is being
made, so this extremely helpful context can only be encoded in the commit message.

The preferred convention in VTR is to structure commit messages as follows:

Header line: explain the commit in one line (use the imperative)

More detailed explanatory text. Explain the problem that this commit
is solving. Focus on why you are making this change as opposed to how
(the code explains that). Are there side effects or other unintuitive
consequences of this change? Here's the place to explain them.

If necessary. Wrap lines at some reasonable point (e.g. 74 characters,
or so) In some contexts, the header line is treated as the subject
of the commit and the rest of the text as the body. The blank line
separating the summary from the body is critical (unless you omit
the body entirely); various tools like `log`, `shortlog` and `rebase`
can get confused if you run the two together.

Further paragraphs come after blank lines.

- Bullet points are okay, too

- Typically a hyphen or asterisk is used for the bullet, preceded
by a single space, with blank lines in between, but conventions
vary here

You can also put issue tracker references at the bottom like this:

Fixes: #123
See also: #456, #789

(based off of here, and here).

Commit messages do not always need to be long, so use your judgement. More complex or involved changes with
wider ranging implications likely deserve longer commit messages than fixing a simple typo.

It is often helpful to phrase the first line of a commit as an imperative/command written as if to tell the repository
what to do (e.g. Update netlist data structure comments, Add tests for feature XYZ, Fix
bug which ...).
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To provide quick context, some VTR developers also tag the first line with the main part of the code base effected,
some common ones include:

• vpr: for the VPR place and route tool (vpr/)

• flow: VTR flow architectures, scripts, tests, . . . (vtr_flow/)

• archfpga: for FPGA architecture library (libs/libarchfpga)

• vtrutil: for common VTR utilities (libs/libvtrutil)

• doc: Documentation (doc/, *.md, . . . )

• infra: Infrastructure (CI, .github/, . . . )

10.3.2 Commit Structure

Generally, you should strive to keep commits atomic (i.e. they do one logical change to the code). This often means
keeping commits small and focused in what they change. Of course, a large number of miniscule commits is also
unhelpful (overwhelming and difficult to see the structure), and sometimes things can only be done in large changes –
so use your judgement. A reasonable rule of thumb is to try and ensure VTR will still compile after each commit.

For those familiar with history re-writing features in git (e.g. rebase) you can sometimes use these to clean-up your
commit history after the fact. However these should only be done on private branches, and never directly on master.

10.4 Code Formatting

Some parts of the VTR code base (e.g. VPR, libarchfpga, libvtrutil) have code formatting requirements which are
checked automatically by regression tests. If your code changes are not compliant with the formatting, you can run:

make format

from the root of the VTR source tree. This will automatically reformat your code to be compliant with formatting
requirements (this requires the clang-format tool to be available on your system).

10.4.1 Large Scale Reformatting

For large scale reformatting (should only be performed by VTR maintainers) the script dev/autoformat.py can
be used to reformat the code and commit it as ‘VTR Robot’, which keeps the revision history clearer and records
metadata about reformatting commits (which allows git hyper-blame to skip such commits).

10.5 Running Tests

VTR has a variety of tests which are used to check for correctness, performance and Quality of Result (QoR).

There are 4 main regression tests:

• vtr_reg_basic: ~1 minute serial

Goal: Fast functionality check

Feature Coverage: Low

Benchmarks: A few small and simple circuits

Architectures: A few simple architectures
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This regression test is not suitable for evaluating QoR or performance. It’s primary purpose is to make sure the
various tools do not crash/fail in the basic VTR flow.

QoR checks in this regression test are primarily ‘canary’ checks to catch gross degradations in QoR. Occasion-
ally, code changes can cause QoR failures (e.g. due to CAD noise – particularly on small benchmarks); usually
such failures are not a concern if the QoR differences are small.

• vtr_reg_strong: ~20 minutes serial, ~15 minutes with -j4

Goal: Broad functionality check

Feature Coverage: High

Benchmarks: A few small circuits, with some special benchmarks to exercise specific features

Architectures: A variety of architectures, including special architectures to exercise specific features

This regression test is not suitable for evaluating QoR or performance. It’s primary purpose is try and achieve
high functionality coverage.

QoR checks in this regression test are primarily ‘canary’ checks to catch gross degradations in QoR. Occasion-
ally, changes can cause QoR failures (e.g. due to CAD noise – particularly on small benchmarks); usually such
failures are not a concern if the QoR differences are small.

• vtr_reg_nightly: ~6 hours with -j3

Goal: Basic QoR and Performance evaluation.

Feature Coverage: Medium

Benchmarks: Small-medium size, diverse. Includes:

– MCNC20 benchmarks

– VTR benchmarks

– Titan ‘other’ benchmarks (smaller than Titan23)

Architectures: A wider variety of architectures

QoR checks in this regression are aimed at evaluating quality and run-time of the VTR flow. As a result any
QoR failures are a concern and should be investigated and understood.

• vtr_reg_weekly: ~42 hours with -j4

Goal: Full QoR and Performance evaluation.

Feature Coverage: Medium

Benchmarks: Medium-Large size, diverse. Includes:

– VTR benchmarks

– Titan23 benchmarks

Architectures: A wide variety of architectures

QoR checks in this regression are aimed at evaluating quality and run-time of the VTR flow. As a result any
QoR failures are a concern and should be investigated and understood.

These can be run with run_reg_test.pl:

#From the VTR root directory
$ ./run_reg_test.pl vtr_reg_basic
$ ./run_reg_test.pl vtr_reg_strong
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The nightly and weekly regressions require the Titan and ISPD benchmarks which can be integrated into your VTR
tree with:

make get_titan_benchmarks
make get_ispd_benchmarks

They can then be run using run_reg_test.pl:

$ ./run_reg_test.pl vtr_reg_nightly
$ ./run_reg_test.pl vtr_reg_weekly

To speed-up things up, individual sub-tests can be run in parallel using the -j option:

#Run up to 4 tests in parallel
$ ./run_reg_test.pl vtr_reg_strong -j4

You can also run multiple regression tests together:

#Run both the basic and strong regression, with up to 4 tests in parallel
$ ./run_reg_test.pl vtr_reg_basic vtr_reg_strong -j4

10.5.1 Odin Functionality Tests

Odin has its own set of tests to verify the correctness of its synthesis results:

• odin_reg_micro: ~2 minutes serial

• odin_reg_full: ~6 minutes serial

These can be run with:

#From the VTR root directory
$ ./run_reg_test.pl odin_reg_micro
$ ./run_reg_test.pl odin_reg_full

and should be used when making changes to Odin.

10.5.2 Unit Tests

VTR also has a limited set of unit tests, which can be run with:

#From the VTR root directory
$ make && make test

10.5.3 Running tests on Pull Requests (PRs) via Kokoro

Because of the long runtime for nightly and weekly tests, a Kokoro job can be used to run these tests once a Pull
Request (PR) has been made at https://github.com/verilog-to-routing/vtr-verilog-to-routing.

Any pull request made by a contributor of the verilog-to-routing GitHub project on https://github.com/verilog-to-
routing/ will get a set of jobs immediately. Non-contributors can request a contributor on the project add a label
“kokoro:force-run” to the PR. Kokoro will then detect the tag, remove the tag, and then and issue jobs for that PR. If
the tag remains after being added, there may not be an available Kokoro runner, so wait.
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Re-running tests on Kokoro

If a job fails due to an intermittent failure or a re-run is desired, a contributor can add the label “kokoro:force-run” to
re-issue jobs for that PR.

Checking results from Kokoro tests

Currently there is not a way for an in-flight job to be monitored.

Once a job has been completed, you can follow the “Details” link that appears on the PR status. The Kokoro page
will show the job’s stdout in the ‘Target Log’ tab (once the job has completed). The full log can be downloading by
clicking the ‘Download Full Log’ button, or from the ‘Artifacts’ tab.

Downloading logs from Google Cloud Storage (GCS)

After a Kokoro run is complete a number of useful log files (e.g. for each VPR invocation) are stored to Google Cloud
Storage (GCS).

The top level directory containing all VTR Kokoro runs is:

https://console.cloud.google.com/storage/browser/vtr-verilog-to-routing/artifacts/
→˓prod/foss-fpga-tools/verilog-to-routing/upstream/

PR jobs are under the presubmit directory, and continuous jobs (which run on the master branch) are under the
continuous directory.

Each Kokoro run has a unique build number, which can be found in the log file (available via the Kokoro run webpage).
For example, if the log file contains:

export KOKORO_BUILD_NUMBER="450"

then the Kokoro build number is 450.

If build 450 corresponded to a PR (presubmit) build of the nightly regression tests, the resulting output files
would be available at:

https://console.cloud.google.com/storage/browser/vtr-verilog-to-routing/artifacts/
→˓prod/foss-fpga-tools/verilog-to-routing/upstream/presubmit/nightly/450/

where presubmit/nightly/450/ (the type, test name and build number) have been appended to the base URL.
Navigating to that URL will allow you to browse and download the collected log files.

To download all the files from that Kokoro run, replace https://console.cloud.google.com/storage/
browser/ in the URL with gs:// and invoke the gsutil command (and it’s cp -R sub-command), like so:

gsutil -m cp -R gs://vtr-verilog-to-routing/artifacts/prod/foss-fpga-tools/verilog-to-
→˓routing/upstream/presubmit/nightly/450 .

This will download all of the logs to the current directory for inspection.
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Kokoro runner details

Kokoro runners are a standard n1-highmem-16 VM with a 4 TB pd-standard disk used to perform the build of
VPR and run the tests.

What to do if Kokoro jobs are not starting?

There are several reasons Kokoro jobs might not be starting. Try adding the “kokoro:force-run” label if it is not already
added, or remove and add it if it already was added.

If adding the label has no affect, check GCS status, as a GCS disruption will also disrupt Kokoro.

Another reason jobs may not start is if there is a large backlog of jobs running, there may be no runners left to start. In
this case, someone with Kokoro management rights may need to terminate stale jobs, or wait for job timeouts.

10.6 Debugging Failed Tests

If a test fails you probably want to look at the log files to determine the cause.

Lets assume we have a failure in vtr_reg_basic:

#In the VTR root directory
$ ./run_reg_test.pl vtr_reg_strong
#Output trimmed...
regression_tests/vtr_reg_basic/basic_no_timing
-----------------------------------------
k4_N10_memSize16384_memData64/ch_intrinsics/common failed: vpr
k4_N10_memSize16384_memData64/diffeq1/common failed: vpr
#Output trimmed...
regression_tests/vtr_reg_basic/basic_no_timing...[Fail]
k4_N10_memSize16384_memData64.xml/ch_intrinsics.v vpr_status: golden = success
→˓result = exited
#Output trimmed...
Error: 10 tests failed!

Here we can see that vpr failed, which caused subsequent QoR failures ([Fail]), and resulted in 10 total errors.

To see the log files we need to find the run directory. We can see from the output that the specific test which
failed was regression_tests/vtr_reg_basic/basic_no_timing. All the regression tests take place un-
der vtr_flow/tasks, so the test directory is vtr_flow/tasks/regression_tests/vtr_reg_basic/
basic_no_timing. Lets move to that directory:

#From the VTR root directory
$ cd vtr_flow/tasks/regression_tests/vtr_reg_basic/basic_no_timing
$ ls
config run001 run003
latest run002 run004 run005

There we see there is a config directory (which defines the test), and a set of run-directories. Each time a test
is run it creates a new runXXX directory (where XXX is an incrementing number). From the above we can tell
that our last run was run005 (the symbolic link latest also points to the most recent run directory). From the
output of run_reg_test.pl we know that one of the failing architecture/circuit/parameters combinations was
k4_N10_memSize16384_memData64/ch_intrinsics/common. Each architecture/circuit/parameter com-
bination is run in its own sub-folder. Lets move to that directory:
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$ cd run005/k4_N10_memSize16384_memData64/ch_intrinsics/common
$ ls
abc.out k4_N10_memSize16384_memData64.xml qor_results.txt
ch_intrinsics.net odin.out thread_1.out
ch_intrinsics.place output.log vpr.out
ch_intrinsics.pre-vpr.blif output.txt vpr_stdout.log
ch_intrinsics.route parse_results.txt

Here we can see the individual log files produced by each tool (e.g. vpr.out), which we can use to guide our
debugging. We could also manually re-run the tools (e.g. with a debugger) using files in this directory.

10.7 Evaluating Quality of Result (QoR) Changes

VTR uses highly tuned and optimized algorithms and data structures. Changes which effect these can have significant
impacts on the quality of VTR’s design implementations (timing, area etc.) and VTR’s run-time/memory usage. Such
changes need to be evaluated carefully before they are pushed/merged to ensure no quality degradation occurs.

If you are unsure of what level of QoR evaluation is necessary for your changes, please ask a VTR developer for
guidance.

10.7.1 General QoR Evaluation Principles

The goal of performing a QoR evaluation is to measure precisely the impact of a set of code/architecture/benchmark
changes on both the quality of VTR’s design implementation (i.e. the result of VTR’s optimizations), and on tool
run-time and memory usage.

This process is made more challenging by the fact that many of VTR’s optimization algorithms are based on heuristics
(some of which depend on randomization). This means that VTR’s implementation results are dependent upon:

• The initial conditions (e.g. input architecture & netlist, random number generator seed), and

• The precise optimization algorithms used.

The result is that a minor change to either of these can can make the measured QoR change. This effect can be
viewed as an intrinsic ‘noise’ or ‘variance’ to any QoR measurement for a particular architecture/benchmark/algorithm
combination.

There are typically two key methods used to measure the ‘true’ QoR:

1. Averaging metrics across multiple architectures and benchmark circuits.

2. Averaging metrics multiple runs of the same architecture and benchmark, but using different random number
generator seeds

This is a further variance reduction technique, although it can be very CPU-time intensive. A typical example
would be to sweep an entire benchmark set across 3 or 5 different seeds.

In practice any algorithm changes will likely cause improvements on some architecture/benchmark combinations,
and degradations on others. As a result we primarily focus on the average behaviour of a change to evaluate its
impact. However extreme outlier behaviour on particular circuits is also important, since it may indicate bugs or other
unexpected behaviour.
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Key QoR Metrics

The following are key QoR metrics which should be used to evaluate the impact of changes in VTR.

Implementation Quality Metrics:

* By default, VPR attempts to find the minimum routable channel width; it then performs routing at a relaxed (e.g.
1.3x minimum) channel width. At minimum channel width routing congestion can distort the true timing/wirelength
characteristics. Combined with the fact that most FPGA architectures are built with an abundance of routing, post-
routing metrics are usually only evaluated at the relaxed channel width.

Run-time/Memory Usage Metrics:

* Note that the minimum channel width route time is chaotic and can be highly variable (e.g. 10x variation is not
unusual). Minimum channel width routing performs a binary search to find the minimum channel width. Since route
time is highly dependent on congestion, run-time is highly dependent on the precise channel widths searched (which
may change due to perturbations).

In practice you will likely want to consider additional and more detailed metrics, particularly those directly related to
the changes you are making. For example, if your change related to hold-time optimization you would want to include
hold-time related metrics such as hold_TNS (hold total negative slack) and hold_WNS (hold worst negative slack).
If your change related to packing, you would want to report additional packing-related metrics, such as the number of
clusters formed by each block type (e.g. numbers of CLBs, RAMs, DSPs, IOs).

Benchmark Selection

An important factor in performing any QoR evaluation is the benchmark set selected. In order to draw reasonably
general conclusions about the impact of a change we desire two characteristics of the benchmark set:

1. It includes a large number of benchmarks which are representative of the application domains of interest.

This ensures we don’t over-tune to a specific benchmark or application domain.

2. It should include benchmarks of large sizes.

This ensures we can optimize and scale to large problem spaces.

In practice (for various reasons) satisfying both of these goals simultaneously is challenging. The key goal here
is to ensure the benchmark set is not unreasonably biased in some manner (e.g. benchmarks which are too small,
benchmarks too skewed to a particular application domain).

Fairly measuring tool run-time

Accurately and fairly measuring the run-time of computer programs is challenging in practice. A variety of factors
effect run-time including:

• Operating System

• System load (e.g. other programs running)

• Variance in hardware performance (e.g. different CPUs on different machines, CPU frequency scaling)

To make reasonably ‘fair’ run-time comparisons it is important to isolate the change as much as possible from other
factors. This involves keeping as much of the experimental environment identical as possible including:

1. Target benchmarks

2. Target architecture

3. Code base (e.g. VTR revision)
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4. CAD parameters

5. Computer system (e.g. CPU model, CPU frequency/power scaling, OS version)

6. Compiler version

10.7.2 Collecting QoR Measurements

The first step is to collect QoR metrics on your selected benchmark set.

You need at least two sets of QoR measurements:

1. The baseline QoR (i.e. unmodified VTR).

2. The modified QoR (i.e. VTR with your changes).

Note that it is important to generate both sets of QoR measurements on the same computing infrastructure to ensure a
fair run-time comparison.

The following examples show how a single set of QoR measurements can be produced using the VTR flow infrastruc-
ture.

Example: VTR Benchmarks QoR Measurement

The VTR benchmarks are a group of benchmark circuits distributed with the VTR project. The are provided as
synthesizable verilog and can be re-mapped to VTR supported architectures. They consist mostly of small to medium
sized circuits from a mix of application domains. They are used primarily to evaluate the VTR’s optimization quality
in an architecture exploration/evaluation setting (e.g. determining minimum channel widths).

A typical approach to evaluating an algorithm change would be to run vtr_reg_qor_chain task from the nightly
regression test:

#From the VTR root
$ cd vtr_flow/tasks

#Run the VTR benchmarks
$ ../scripts/run_vtr_task.pl regression_tests/vtr_reg_nightly/vtr_reg_qor_chain

#Several hours later... they complete

#Parse the results
$ ../scripts/parse_vtr_task.pl regression_tests/vtr_reg_nightly/vtr_reg_qor_chain

#The run directory should now contain a summary parse_results.txt file
$ head -5 vtr_reg_nightly/vtr_reg_qor_chain/latest/parse_results.txt
arch circuit script_
→˓params vpr_revision vpr_status error num_pre_packed_
→˓nets num_pre_packed_blocks num_post_packed_nets num_post_
→˓packed_blocks device_width device_height num_clb num_
→˓io num_outputs num_memoriesnum_mult placed_wirelength_
→˓est placed_CPD_est placed_setup_TNS_est placed_setup_WNS_
→˓est min_chan_width routed_wirelength min_chan_width_route_
→˓success_iteration crit_path_routed_wirelength crit_path_route_success_
→˓iteration critical_path_delay setup_TNS setup_WNS hold_
→˓TNS hold_WNS logic_block_area_total logic_block_area_
→˓used min_chan_width_routing_area_total min_chan_width_routing_area_
→˓per_tile crit_path_routing_area_total crit_path_routing_area_per_
→˓tile odin_synth_time abc_synth_time abc_cec_time abc_
→˓sec_time ace_time pack_time place_time min_chan_width_
→˓route_time crit_path_route_time vtr_flow_elapsed_time max_vpr_
→˓mem max_odin_mem max_abc_mem

(continues on next page)
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k6_frac_N10_frac_chain_mem32K_40nm.xml bgm.v common
→˓ 9f591f6-dirty success 26431
→˓ 24575 14738 2258
→˓ 53 53 1958 257 32
→˓ 0 11 871090 18.5121
→˓ -13652.6 -18.5121 84
→˓ 328781 32
→˓ 297718 18
→˓ 20.4406 -15027.8 -20.4406 0
→˓ 0 1.70873e+08 1.09883e+08
→˓ 1.63166e+07 5595.54
→˓ 2.07456e+07 7114.41
→˓ 11.16 1.03 -1 -1
→˓ -1 141.53 108.26 142.42
→˓ 15.63 652.17 1329712
→˓ 528868 146796
k6_frac_N10_frac_chain_mem32K_40nm.xml blob_merge.v common
→˓ 9f591f6-dirty success 14163
→˓ 11407 3445 700
→˓ 30 30 564 36
→˓ 100 0 0 113369
→˓ 13.4111 -2338.12 -13.4111
→˓ 64 80075 18
→˓ 75615 23
→˓ 15.3479 -2659.17 -15.3479 0
→˓ 0 4.8774e+07 3.03962e+07
→˓ 3.87092e+06 4301.02
→˓ 4.83441e+06 5371.56
→˓ 0.46 0.17 -1 -1
→˓ -1 67.89 11.30 47.60
→˓ 3.48 198.58 307756
→˓ 48148 58104
k6_frac_N10_frac_chain_mem32K_40nm.xml boundtop.v common
→˓ 9f591f6-dirty success 1071
→˓ 1141 595 389
→˓ 13 13 55 142
→˓ 192 0 0 5360
→˓ 3.2524 -466.039 -3.2524
→˓ 34 4534 15
→˓ 3767 12
→˓ 3.96224 -559.389 -3.96224 0
→˓ 0 6.63067e+06 2.96417e+06
→˓ 353000. 2088.76
→˓ 434699. 2572.18
→˓ 0.29 0.11 -1 -1
→˓ -1 2.55 0.82 2.10
→˓ 0.15 7.24 87552
→˓ 38484 37384
k6_frac_N10_frac_chain_mem32K_40nm.xml ch_intrinsics.v common
→˓ 9f591f6-dirty success 363
→˓ 493 270 247
→˓ 10 10 17 99
→˓ 130 1 0 1792
→˓ 1.86527 -194.602 -1.86527
→˓ 46 1562 13
→˓ 1438 20
→˓ 2.4542 -226.033 -2.4542 0
→˓ 0 3.92691e+06 1.4642e+06
→˓ 259806. 2598.06
→˓ 333135. 3331.35
→˓ 0.03 0.01 -1 -1
→˓ -1 0.46 0.31 0.94
→˓ 0.09 2.59 62684
→˓ 8672 32940

(continues on next page)
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Example: Titan Benchmarks QoR Measurements

The Titan benchmarks are a group of large benchmark circuits from a wide range of applications, which are compatible
with the VTR project. The are typically used as post-technology mapped netlists which have been pre-synthesized with
Quartus. They are substantially larger and more realistic than the VTR benchmarks, but can only target specifically
compatible architectures. They are used primarily to evaluate the optimization quality and scalability of VTR’s CAD
algorithms while targeting a fixed architecture (e.g. at a fixed channel width).

A typical approach to evaluating an algorithm change would be to run vtr_reg_titan task from the weekly
regression test:

#From the VTR root

#Download and integrate the Titan benchmarks into the VTR source tree
$ make get_titan_benchmarks

#Move to the task directory
$ cd vtr_flow/tasks

#Run the VTR benchmarks
$ ../scripts/run_vtr_task.pl regression_tests/vtr_reg_weekly/vtr_reg_titan

#Several days later... they complete

#Parse the results
$ ../scripts/parse_vtr_task.pl regression_tests/vtr_reg_weekly/vtr_reg_titan

#The run directory should now contain a summary parse_results.txt file
$ head -5 vtr_reg_nightly/vtr_reg_qor_chain/latest/parse_results.txt
arch circuit vpr_
→˓revision vpr_status error num_pre_packed_nets num_pre_
→˓packed_blocks num_post_packed_nets num_post_packed_
→˓blocks device_width device_height num_clb num_
→˓io num_outputs num_memoriesnum_mult placed_wirelength_
→˓est placed_CPD_est placed_setup_TNS_est placed_setup_WNS_
→˓est routed_wirelength crit_path_route_success_iteration logic_
→˓block_area_total logic_block_area_used routing_area_
→˓total routing_area_per_tile critical_path_delay setup_TNS
→˓setup_WNS hold_TNS hold_WNS pack_time place_
→˓time crit_path_route_time max_vpr_mem max_odin_mem max_
→˓abc_mem
stratixiv_arch.timing.xml neuron_stratixiv_arch_timing.blif
→˓ 0208312 success 119888
→˓ 86875 51408 3370
→˓ 128 95 -1 42 35
→˓ -1 -1 3985635 8.70971
→˓ -234032 -8.70971 1086419
→˓ 20 0 0
→˓ 2.66512e+08 21917.1 9.
→˓64877 -262034 -9.64877 0 0
→˓ 127.92 218.48 259.96 5133800
→˓ -1 -1
stratixiv_arch.timing.xml sparcT1_core_stratixiv_arch_timing.blif
→˓ 0208312 success 92813
→˓ 91974 54564 4170
→˓ 77 57 -1 173
→˓ 137 -1 -1 3213593
→˓ 7.87734 -534295 -7.87734
→˓ 1527941 43 0
→˓ 0 9.64428e+07 21973.8
→˓ 9.06977 -625483 -9.06977 0
→˓ 0 327.38 338.65 364.46
→˓ 3690032 -1 -1

(continues on next page)
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stratixiv_arch.timing.xml stereo_vision_stratixiv_arch_timing.
→˓blif 0208312 success 127088
→˓ 94088 62912 3776
→˓ 128 95 -1 326
→˓ 681 -1 -1 4875541
→˓ 8.77339 -166097 -8.77339
→˓ 998408 16 0
→˓ 0 2.66512e+08 21917.1
→˓ 9.36528 -187552 -9.36528 0
→˓ 0 110.03 214.16 189.83
→˓ 5048580 -1 -1
stratixiv_arch.timing.xml cholesky_mc_stratixiv_arch_timing.blif
→˓ 0208312 success 140214
→˓ 108592 67410 5444
→˓ 121 90 -1 111
→˓ 151 -1 -1 5221059
→˓ 8.16972 -454610 -8.16972
→˓ 1518597 15 0
→˓ 0 2.38657e+08 21915.3
→˓ 9.34704 -531231 -9.34704 0
→˓ 0 211.12 364.32 490.24
→˓ 6356252 -1 -1

10.7.3 Comparing QoR Measurements

Once you have two (or more) sets of QoR measurements they now need to be compared.

A general method is as follows:

1. Normalize all metrics to the values in the baseline measurements (this makes the relative changes easy to eval-
uate)

2. Produce tables for each set of QoR measurements showing the per-benchmark relative values for each metric

3. Calculate the GEOMEAN over all benchmarks for each normalized metric

4. Produce a summary table showing the Metric Geomeans for each set of QoR measurements

QoR Comparison Gotchas

There are a variety of ‘gotchas’ you need to avoid to ensure fair comparisons:

• GEOMEAN’s must be over the same set of benchmarks . A common issue is that a benchmark failed to complete
for some reason, and it’s metric values are missing

• Run-times need to be collected on the same compute infrastructure at the same system load (ideally unloaded).
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Example QoR Comparison

Suppose we’ve make a change to VTR, and we now want to evaluate the change. As described above we produce QoR
measurements for both the VTR baseline, and our modified version.

We then have the following (hypothetical) QoR Metrics.

Baseline QoR Metrics:

Modified QoR Metrics:

Based on these metrics we then calculate the following ratios and summary.

QoR Metric Ratio (Modified QoR / Baseline QoR):

QoR Summary:

From the results we can see that our change, on average, achieved a small reduction in the number of logic blocks
(0.95) in return for a 2% increase in minimum channel width and 1% increase in routed wirelength. From a run-time
perspective the packer is substantially faster (0.42).

Automated QoR Comparison Script

To automate some of the QoR comparison VTR includes a script to compare parse_results.txt files and gen-
erate a spreadsheet including the ratio and summary tables.

For example:

#From the VTR Root
$ ./vtr_flow/scripts/qor_compare.py parse_results1.txt parse_results2.txt parse_
→˓results3.txt -o comparison.xlsx

will produce ratio tables and a summary table for the files parse_results1.txt, parse_results2.txt and parse_results3.txt,
where the first file (parse_results1.txt) is assumed to be the baseline used to produce normalized ratios.

10.8 Adding Tests

Any time you add a feature to VTR you must add a test which exercises the feature. This ensures that regression tests
will detect if the feature breaks in the future.

Consider which regression test suite your test should be added to (see Running Tests descriptions).

Typically, test which exercise new features should be added to vtr_reg_strong. These tests should use small
benchmarks to ensure they:

• run quickly (so they get run often!), and

• are easier to debug. If your test will take more than ~1 minute it should probably go in a longer running
regression test (but see first if you can create a smaller testcase first).
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10.8.1 Adding a test to vtr_reg_strong

This describes adding a test to vtr_reg_strong, but the process is similar for the other regression tests.

1. Create a configuration file

First move to the vtr_reg_strong directory:

#From the VTR root directory
$ cd vtr_flow/tasks/regression_tests/vtr_reg_strong
$ ls
qor_geomean.txt strong_flyover_wires strong_pack_and_place
strong_analysis_only strong_fpu_hard_block_arch strong_power
strong_bounding_box strong_fracturable_luts strong_route_only
strong_breadth_first strong_func_formal_flow strong_scale_delay_budgets
strong_constant_outputs strong_func_formal_vpr strong_sweep_constant_
→˓outputs
strong_custom_grid strong_global_routing strong_timing
strong_custom_pin_locs strong_manual_annealing strong_titan
strong_custom_switch_block strong_mcnc strong_valgrind
strong_echo_files strong_minimax_budgets strong_verify_rr_graph
strong_fc_abs strong_multiclock task_list.txt
strong_fix_pins_pad_file strong_no_timing task_summary
strong_fix_pins_random strong_pack

Each folder (prefixed with strong_ in this case) defines a task (sub-test).

Let’s make a new task named strong_mytest. An easy way is to copy an existing configuration file such as
strong_timing/config/config.txt

$ mkdir -p strong_mytest/config
$ cp strong_timing/config/config.txt strong_mytest/config/.

You can now edit strong_mytest/config/config.txt to customize your test.

2. Generate golden reference results

Now we need to test our new test and generate ‘golden’ reference results. These will be used to compare future
runs of our test to detect any changes in behaviour (e.g. bugs).

From the VTR root, we move to the vtr_flow/tasks directory, and then run our new test:

#From the VTR root
$ cd vtr_flow/tasks
$ ../scripts/run_vtr_task.pl regression_tests/vtr_reg_strong/strong_mytest

regression_tests/vtr_reg_strong/strong_mytest
-----------------------------------------
Current time: Jan-25 06:51 PM. Expected runtime of next benchmark: Unknown
k6_frac_N10_mem32K_40nm/ch_intrinsics...OK

Next we can generate the golden reference results using parse_vtr_task.pl with the -create_golden
option:

$ ../scripts/parse_vtr_task.pl regression_tests/vtr_reg_strong/strong_mytest -
→˓create_golden

And check that everything matches with -check_golden:
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$ ../scripts/parse_vtr_task.pl regression_tests/vtr_reg_strong/strong_mytest -
→˓check_golden
regression_tests/vtr_reg_strong/strong_mytest...[Pass]

3. Add it to the task list

We now need to add our new strong_mytest task to the task list, so it is run whenever vtr_reg_strong
is run. We do this by adding the line regression_tests/vtr_reg_strong/strong_mytest to the
end of vtr_reg_strong’s task_list.txt:

#From the VTR root directory
$ vim vtr_flow/tasks/regression_tests/vtr_reg_strong/task_list.txt
# Add a new line 'regression_tests/vtr_reg_strong/strong_mytest' to the end of
→˓the file

Now, when we run vtr_reg_strong:

#From the VTR root directory
$ ./run_reg_test.pl vtr_reg_strong
#Output trimmed...
regression_tests/vtr_reg_strong/strong_mytest
-----------------------------------------
#Output trimmed...

we see our test is run.

4. Commit the new test

Finally you need to commit your test:

#Add the config.txt and golden_results.txt for the test
$ git add vtr_flow/tasks/regression_tests/vtr_reg_strong/strong_mytest/
#Add the change to the task_list.txt
$ git add vtr_flow/tasks/regression_tests/vtr_reg_strong/task_list.txt
#Commit the changes, when pushed the test will automatically be picked up by
→˓BuildBot
$ git commit

10.9 Debugging Aids

VTR has support for several additional tools/features to aid debugging.

10.9.1 Sanitizers

VTR can be compiled using sanitizers which will detect invalid memory accesses, memory leaks and undefined be-
haviour (supported by both GCC and LLVM):

#From the VTR root directory
$ cmake -D VTR_ENABLE_SANITIZE=ON build
$ make
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10.9.2 Assertion Levels

VTR supports configurable assertion levels.

The default level (2) which turns on most assertions which don’t cause significant run-time penalties.

This level can be increased:

#From the VTR root directory
$ cmake -D VTR_ASSERT_LEVEL=3 build
$ make

this turns on more extensive assertion checking and re-builds VTR.

10.9.3 GDB Pretty Printers

To make it easier to debug some of VTR’s data structures with GDB.

STL Pretty Printers

It is helpful to enable STL pretty printers, which make it much easier to debug data structures using STL.

For example printing a std::vector<int> by default prints:

(gdb) p/r x_locs
$2 = {<std::_Vector_base<int, std::allocator<int> >> = {

_M_impl = {<std::allocator<int>> = {<__gnu_cxx::new_allocator<int>> = {<No data
→˓fields>}, <No data fields>}, _M_start = 0x555556f063b0,

_M_finish = 0x555556f063dc, _M_end_of_storage = 0x555556f064b0}}, <No data
→˓fields>}

which is not very helpful.

But with STL pretty printers it prints:

(gdb) p x_locs
$2 = std::vector of length 11, capacity 64 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

which is much more helpful for debugging!

If STL pretty printers aren’t already enabled on your system, add the following to your .gdbinit file:

python
import sys
sys.path.insert(0, '$STL_PRINTER_ROOT')
from libstdcxx.v6.printers import register_libstdcxx_printers
register_libstdcxx_printers(None)

end

where $STL_PRINTER_ROOT should be replaced with the appropriate path to the STL pretty printers. For exam-
ple recent versions of GCC include these under /usr/share/gcc-*/python (e.g. /usr/share/gcc-9/
python)
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VTR Pretty Printers

VTR includes some pretty printers for some VPR/VTR specific types.

For example, without the pretty printers you would see the following when printing a VPR AtomBlockId:

(gdb) p blk_id
$1 = {

id_ = 71
}

But with the VTR pretty printers enabled you would see:

(gdb) p blk_id
$1 = AtomBlockId(71)

To enable the VTR pretty printers in GDB add the following to your .gdbinit file:

python
import sys

sys.path.insert(0, "$VTR_ROOT/dev")
import vtr_gdb_pretty_printers
gdb.pretty_printers.append(vtr_gdb_pretty_printers.vtr_type_lookup)

end

where $VTR_ROOT should be replaced with the root of the VTR source tree on your system.

10.9.4 RR (Record Replay) Debugger

RR extends GDB with the ability to to record a run of a tool and then re-run it to reproduce any observed issues. RR
also enables efficient reverse execution (!) which can be extremely helpful when tracking down the source of a bug.

10.10 Speeding up the edit-compile-test cycle

Rapid iteration through the edit-compile-test/debug cycle is very helpful when making code changes to VTR.

The following is some guidance on techniques to reduce the time required.

10.11 Speeding Compilation

1. Parallel compilation

For instance when building VTR using make, you can specify the -j N option to compile the code base with
N parallel jobs:

$ make -j N

A reasonable value for N is equal to the number of threads you system can run. For instance, if your system has
4 cores with HyperThreading (i.e. 2-way SMT) you could run:
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$ make -j8

2. Building only a subset of VTR

If you know your changes only effect a specific tool in VTR, you can request that only that tool is rebuilt. For
instance, if you only wanted to re-compile VPR you could run:

$ make vpr

which would avoid re-building other tools (e.g. ODIN, ABC).

3. Use ccache

ccache is a program which caches previous compilation results. This can save significant time, for instance,
when switching back and forth between release and debug builds.

VTR’s cmake configuration should automatically detect and make use of ccache once it is installed.

For instance on Ubuntu/Debian systems you can install ccache with:

$ sudo apt install ccache

This only needs to be done once on your development system.

4. Disable Interprocedural Optimizatiaons (IPO)

IPO re-optimizes an entire executable at link time, and is automatically enabled by VTR if a supporting compiler
is found. This can notably improve performance (e.g. ~10-20% faster), but can significantly increase compila-
tion time (e.g. >2x in some cases). When frequently re-compiling and debugging the extra execution speed may
not be worth the longer compilation times. In such cases you can manually disable IPO by setting the cmake
parameter VTR_IPO_BUILD=off.

For instance using the wrapper Makefile:

$ make CMAKE_PARAMS="-DVTR_IPO_BUILD=off"

Note that this option is sticky, so subsequent calls to make don’t need to keep specifying VTR_IPO_BUILD,
until you want to re-enable it.

This setting can also be changed with the ccmake tool (i.e. ccmake build).

All of these option can be used in combination. For example, the following will re-build only VPR using 8 parallel
jobs with IPO disabled:

make CMAKE_PARAMS="-DVTR_IPO_BUILD=off" -j8 vpr

10.12 External Subtrees

VTR includes some code which is developed in external repositories, and is integrated into the VTR source tree using
git subtrees.

To simplify the process of working with subtrees we use the dev/external_subtrees.py script.

For instance, running ./dev/external_subtrees.py --list from the VTR root it shows the subtrees:

Component: abc Path: abc URL: https://github.
→˓com/berkeley-abc/abc.git URL_Ref: master
Component: libargparse Path: libs/EXTERNAL/libargparse URL: https://github.
→˓com/kmurray/libargparse.git URL_Ref: master

(continues on next page)
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(continued from previous page)

Component: libblifparse Path: libs/EXTERNAL/libblifparse URL: https://github.
→˓com/kmurray/libblifparse.git URL_Ref: master
Component: libsdcparse Path: libs/EXTERNAL/libsdcparse URL: https://github.
→˓com/kmurray/libsdcparse.git URL_Ref: master
Component: libtatum Path: libs/EXTERNAL/libtatum URL: https://github.
→˓com/kmurray/tatum.git URL_Ref: master

Code included in VTR by subtrees should not be modified within the VTR source tree. Instead changes should be made
in the relevant up-stream repository, and then synced into the VTR tree.

10.12.1 Updating an existing Subtree

1. From the VTR root run: ./dev/external_subtrees.py $SUBTREE_NAME, where
$SUBTREE_NAME is the name of an existing subtree.

For example to update the libtatum subtree:

./dev/external_subtrees.py --update libtatum

10.12.2 Adding a new Subtree

To add a new external subtree to VTR do the following:

1. Add the subtree specification to dev/subtree_config.xml.

For example to add a subtree name libfoo from the master branch of https://github.com/
kmurray/libfoo.git to libs/EXTERNAL/libfoo you would add:

<subtree
name="libfoo"
internal_path="libs/EXTERNAL/libfoo"
external_url="https://github.com/kmurray/libfoo.git"
default_external_ref="master"/>

within the existing <subtrees> tag.

Note that the internal_path directory should not already exist.

You can confirm it works by running: dev/external_subtrees.py --list:

Component: abc Path: abc URL: https://
→˓github.com/berkeley-abc/abc.git URL_Ref: master
Component: libargparse Path: libs/EXTERNAL/libargparse URL: https://
→˓github.com/kmurray/libargparse.git URL_Ref: master
Component: libblifparse Path: libs/EXTERNAL/libblifparse URL: https://
→˓github.com/kmurray/libblifparse.git URL_Ref: master
Component: libsdcparse Path: libs/EXTERNAL/libsdcparse URL: https://
→˓github.com/kmurray/libsdcparse.git URL_Ref: master
Component: libtatum Path: libs/EXTERNAL/libtatum URL: https://
→˓github.com/kmurray/tatum.git URL_Ref: master
Component: libfoo Path: libs/EXTERNAL/libfoo URL: https://
→˓github.com/kmurray/libfoo.git URL_Ref: master

which shows libfoo is now recognized.
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2. Run ./dev/external_subtrees.py --update $SUBTREE_NAME to add the subtree.

For the libfoo example above this would be:

./dev/external_subtrees.py --update libfoo

This will create two commits to the repository. The first will squash all the upstream changes, the second will
merge those changes into the current branch.

10.12.3 Subtree Rational

VTR uses subtrees to allow easy tracking of upstream dependencies.

Their main advantages included:

• Works out-of-the-box: no actions needed post checkout to pull in dependencies (e.g. no git submodule
update --init --recursive)

• Simplified upstream version tracking

• Potential for local changes (although in VTR we do not use this to make keeping in sync easier)

See here for a more detailed discussion.

10.13 Finding Bugs with Coverity

Coverity Scan is a static code analysis service which can be used to detect bugs.

10.13.1 Browsing Defects

To view defects detected do the following:

1. Get a coverity scan account

Contact a project maintainer for an invitation.

2. Browse the existing defects through the coverity web interface

10.13.2 Submitting a build

To submit a build to coverity do the following:

1. Download the coverity build tool

2. Configure VTR to perform a debug build. This ensures that all assertions are enabled, without assertions coverity
may report bugs that are guarded against by assertions. We also set VTR asserts to the highest level.

#From the VTR root
mkdir -p build
cd build
CC=gcc CXX=g++ cmake -DCMAKE_BUILD_TYPE=debug -DVTR_ASSERT_LEVEL=3 ..

Note that we explicitly asked for gcc and g++, the coverity build tool defaults to these compilers, and may not like the
default ‘cc’ or ‘c++’ (even if they are linked to gcc/g++).

1. Run the coverity build tool
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#From the build directory where we ran cmake
cov-build --dir cov-int make -j8

2. Archive the output directory

tar -czvf vtr_coverity.tar.gz cov-int

3. Submit the archive through the coverity web interface

Once the build has been analyzed you can browse the latest results through the coverity web interface

10.13.3 No files emitted

If you get the following warning from cov-build:

[WARNING] No files were emitted.

You may need to configure coverity to ‘know’ about your compiler. For example:

```shell
cov-configure --compiler `which gcc-7`
```

On unix-like systems run scan-build make from the root VTR directory. to output the html analysis to a specific
folder, run scan-build make -o /some/folder

10.14 Release Procedures

10.14.1 General Principles

We periodically make ‘official’ VTR releases. While we aim to keep the VTR master branch stable through-out
development some users prefer to work of off an official release. Historically this has coincided with the publishing of
a paper detailing and carefully evaluating the changes from the previous VTR release. This is particularly helpful for
giving academics a named baseline version of VTR to which they can compare which has a known quality.

In preparation for a release it may make sense to produce ‘release candidates’ which when fully tested and evaluated
(and after any bug fixes) become the official release.

10.14.2 Checklist

The following outlines the procedure to following when making an official VTR release:

• Check the code compiles on the list of supported compilers

• Check that all regression tests pass functionality

• Update regression test golden results to match the released version

• Check that all regression tests pass QoR

• Create a new entry in the CHANGELOG.md for the release, summarizing at a high-level user-facing changes

• Increment the version number (set in root CMakeLists.txt)

• Create a git annotated tag (e.g. v8.0.0) and push it to github

302 Chapter 10. Developer Guide



Verilog-to-Routing Documentation, Release 8.1.0-dev

• GitHub will automatically create a release based on the tag

• Add the new change log entry to the GitHub release description

• Update the ReadTheDocs configuration to build and serve documentation for the relevant tag (e.g. v8.0.0)

• Send a release announcement email to the vtr-announce mailing list (make sure to thank all contributors!)

10.15 Developer Tutorials

10.15.1 New Developer Tutorial

Overview

Welcome to the Verilog-to-Routing (VTR) Project. This project is an open-source, international, collaboration towards
a comprehensive FPGA architecture exploration system that includes CAD tools, benchmarks, transistor-optimized
architecture files, and documentation, along with support to make this all fit together and work. The purpose of this
tutorial is to equip you, the new developer, with the tools and understanding that you need to begin making a useful
contribution to this project.

While you are going through this tutorial, please record down things that should be changed. Whether it is the tutorial
itself, documentation, or other parts of the VTR project. Your thoughts are valuable and welcome because fresh eyes
help evaluate whether or not our work is clearly presented.

Environment Setup

Log into your workstation/personal computer. Check your account for general features such as internet, printing, git,
etc. If there are problems at this stage, talk to your advisor to get this setup.

If you are not familiar with development on Linux, this is the time to get up to speed. Look up online tutorials on
general commands, basic development using Makefiles, etc.

Background Reading

Read the first two chapters of “Architecture and CAD for deep-submicron FPGAs” by Vaughn Betz, et al. This is a
great introduction to the topic of FPGA CAD and architecture. Note though that this book is old so it only covers a
small core of what the VTR project is currently capable of.

Read chapters 1 to 5 of “FPGA Architecture: Survey and Challenges” by Ian Kuon et al.

Review material learned with fellow colleagues.

Setup VTR

Use git to clone a copy of VTR from the GitHub repository:

https://github.com/verilog-to-routing/vtr-verilog-to-routing

Build the project by running the make command

Run ./run_quick_test.pl to check that the build worked

Follow the Quick Start Guilde, and Basic Design Flow Tutorial found in the VTR Documentation
(docs.verilogtorouting.org). These tutorials will allow you to run a circuit through the entire flow and read the statistics
gathered from that run.
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Use VTR

Create your own custom Verilog file. Create your own custom architecture file using one of the existing architecture
files as a template. Use VTR to map that circuit that you created to that architecture that you created. The VTR
documentation, to be found at the https:///docs.verilogtorouting.org will prove useful. You may also wish to look at
the following links for descriptions of the language used inside the architecture files:

• Architecture Description and Packing: http://www.eecg.utoronto.ca/~jluu/publications/luu_vpr_fpga2011.pdf

• Classical Soft Logic Block Example: http://www.eecg.utoronto.ca/vpr/utfal_ex1.html

Perform a simple architecture experiment. Run an experiment that varies Fc_in from 0.01 to 1.00 on the benchmarks
ch_intrinsics, or1200, and sha. Use tasks/timing as your template. Graph the geometric average of minimum channel
width and critical path delay for these three benchmarks across your different values of Fc_in. Review the results with
your colleagues and/or advisor.

Open the Black Box

At this stage, you have gotten a taste of how an FPGA architect would go about using VTR. As a developer though,
you need a much deeper understanding of how this tool works. The purpose of this section is to have you to learn the
details of the VTR CAD flow by having you manually do what the scripts do.

Using the custom Verilog circuit and architecture created in the previous step, directly run Odin II on it to generate a blif
netlist. You may need to skim the ODIN_II/README.rst and the vtr_flow/scripts/run_vtr_flow.pl.

Using the output netlist of Odin II, run ABC to generate a technology-mapped blif file. You may need to skim the
ABC homepage (http://www.eecs.berkeley.edu/~alanmi/abc/).

# Run the ABC program from regular terminal (bash shell)
$VTR_ROOT/abc abc

# Using the ABC shell to read and write blif file
abc 01> read_blif Odin_II_output.blif
abc 01> write_blif abc_output.blif

Using the output of ABC and your architecture file, run VPR to complete the mapping of a user circuit to a target
architecture. You may need to consult the VPR User Manual.

# Run the VPR program
$VTR_ROOT/vpr vpr architecture.xml abc_output.blif

Read the VPR section of the online documentation.

Submitting Changes and Regression Testing

Read README.developers.md in the base directory of VTR. Code changes rapidly so please help keep this up to
date if you see something that is out of date.

Make your first change to git by modifying README.md and pushing it. I recommend adding your name to the list of
contributors. If you have nothing to modify, just add/remove a line of whitespace at the bottom of the file.

Now that you have completed the tutorial, you should have a general sense of what the VTR project is about and how
the different parts work together. It’s time to talk to your advisor to get your first assignment.
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10.15.2 Timing Graph Debugging Tutorial

When developing VPR or creating/calibrating the timing characteristics of a new architectural model it can be helpful
to look ‘inside’ at VPR’s timing graph and analysis results.

Warning: This is a very low-level tutorial suitable for power-users and VTR developers

Generating a GraphViz DOT file of the Entire Timing Graph

One approach is to have VPR generate a GraphViz DOT file, which visualizes the structure of the timing graph, and
the analysis results. This is enabled by running VPR with vpr --echo_file set to on. This will generate a set of
.dot files in the current directory representing the timing graph, delays, and results of Static Timing Analysis (STA).

$ vpr $VTR_ROOT/vtr_flow/arch/timing/EArch.xml $VTR_ROOT/vtr_flow/benchmarks/blif/
→˓multiclock/multiclock.blif --echo_file on

$ ls *.dot
timing_graph.place_final.echo.dot timing_graph.place_initial.echo.dot timing_graph.
→˓pre_pack.echo.dot

The .dot files can then be visualized using a tool like xdot which draws an interactive version of the timing graph.

$ xdot timing_graph.place_final.echo.dot

Warning: On all but the smallest designs the full timing graph .dot file is too large to visualize with xdot. See the
next section for how to show only a subset of the timing graph.

Which will bring up an interactive visualization of the graph:

Where each node in the timing graph is labeled

Node(X) (TYPE)

Where Node(X) (e.g. Node(3)) represents the ID of the timing graph node, and (TYPE) (e.g. OPIN) is the type
of node in the graph.

Each node is also annotated with timing information (produced by STA) like

DATA_ARRIVAL
Domain(1) to * from Node(16)
time: 5.2143e-10

DATA_ARRIVAL
Domain(2) to * from Node(20)
time: 6.9184e-10

DATA_REQUIRED
Domain(1) to Domain(1) for Node(24)
time: -2.357e-10

SLACK
Domain(1) to Domain(1) for Node(24)
time: -5.45e-10

10.15. Developer Tutorials 305



Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 10.1: Full timing graph visualized with xdot on a very small multi-clock circuit.
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where the first line of each entry is the type of timing information (e.g. data arrival time, data required time, slack),
the second line indicates the related launching and capture clocks (with * acting as a wildcard) and the relevant timing
graph node which originated the value, and the third line is the actual time value (in seconds).

The edges in the timing graph are also annoated with their Edge IDs and delays. Special edges related to setup/hold
(tsu, thld) and clock-to-q delays (tcq) of sequential elements (e.g. Flip-Flops) are also labeled and drawn with
different colors.

Generating a GraphViz DOT file of a subset of the Timing Graph

For most non-trivial designs the entire timing graph is too large and difficult to visualize.

To assist this you can generate a DOT file for a subset of the timing graph with vpr
--echo_dot_timing_graph_node

$ vpr $VTR_ROOT/vtr_flow/arch/timing/EArch.xml $VTR_ROOT/vtr_flow/benchmarks/blif/
→˓multiclock/multiclock.blif --echo_file on --echo_dot_timing_graph_node 23

Running xdot timing_graph.place_final.echo.dot now shows the only the subset of the timing graph
which fans-in or fans-out of the specified node (in this case node 23).

Cross-referencing Node IDs with VPR Timing Reports

The DOT files only label timing graph nodes with their node IDs. When debugging it is often helpful to correlate these
with what are seen in timing reports.

To do this, we need to have VPR generate more detailed timing reports which have additional debug information. This
can be done with vpr --timing_report_detail set to debug:

$ vpr $VTR_ROOT/vtr_flow/arch/timing/EArch.xml $VTR_ROOT/vtr_flow/benchmarks/blif/
→˓multiclock/multiclock.blif --timing_report_detail debug

$ ls report_timing*
report_timing.hold.rpt report_timing.setup.rpt

Viewing report_timing.setup.rpt:

#Path 6
Startpoint: FFB.Q[0] (.latch at (1,1) tnode(15) clocked by clk2)
Endpoint : FFD.D[0] (.latch at (1,1) tnode(25) clocked by clk2)
Path Type : setup

Point Incr Path
--------------------------------------------------------------------------------
clock clk2 (rise edge) 0.000 0.000
clock source latency 0.000 0.000
clk2.inpad[0] (.input at (3,2) tnode(4)) 0.000 0.000
| (intra 'io' routing) 0.042 0.042
| (inter-block routing:global net) 0.000 0.042
| (intra 'clb' routing) 0.000 0.042
FFB.clk[0] (.latch at (1,1) tnode(9)) 0.000 0.042
| (primitive '.latch' Tcq_max) 0.124 0.166
FFB.Q[0] (.latch at (1,1) tnode(15)) [clock-to-output] 0.000 0.166
| (intra 'clb' routing) 0.120 0.286
to_FFD.in[1] (.names at (1,1) tnode(21)) 0.000 0.286
| (primitive '.names' combinational delay) 0.235 0.521

(continues on next page)
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Fig. 10.2: Subset of the timing graph which fans in and out of node 23.
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(continued from previous page)

to_FFD.out[0] (.names at (1,1) tnode(23)) 0.000 0.521
| (intra 'clb' routing) 0.000 0.521
FFD.D[0] (.latch at (1,1) tnode(25)) 0.000 0.521
data arrival time 0.521

clock clk2 (rise edge) 0.000 0.000
clock source latency 0.000 0.000
clk2.inpad[0] (.input at (3,2) tnode(4)) 0.000 0.000
| (intra 'io' routing) 0.042 0.042
| (inter-block routing:global net) 0.000 0.042
| (intra 'clb' routing) 0.000 0.042
FFD.clk[0] (.latch at (1,1) tnode(8)) 0.000 0.042
clock uncertainty 0.000 0.042
cell setup time -0.066 -0.024
data required time -0.024
--------------------------------------------------------------------------------
data required time -0.024
data arrival time -0.521
--------------------------------------------------------------------------------
slack (VIOLATED) -0.545

We can see that the elements corresponding to specific timing graph nodes are labeled with tnode(X). For instance:

to_FFD.out[0] (.names at (1,1) tnode(23)) 0.000 0.521

shows the netlist pin named to_FFD.out[0] is tnode(23), which corresponds to Node(23) in the DOT file.

10.16 VTR Support Resources

For support using VPR please use these resources:

1. Check the VTR Documentation: https://docs.verilogtorouting.org

The VTR documentation includes:

• Overviews of what VTR is, and how the flow fits together

• Tutorials on using VTR

• Detailed descriptions of tools and their command-line options

• Descriptions of the file-formats used by VTR

2. Contact the VTR users mailing list: vtr-users@googlegroups.com

The mailing list includes developers and users of VTR. If you have a specific usage case not covered by the
documentation, someone on the mailing list may be able to help.

3. If you’ve found a bug or have an idea for an enhancement consider filing an issue. See here for more details.
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10.17 VTR License

The software package “VTR” includes the software tools ODIN II, ABC, and VPR as well as additional benchmarks,
documentation, libraries and scripts. The authors of the various components of VTR retain their ownership of their
tools.

• Unless otherwise noted (in particular ABC, the benchmark circuits and some libraries), all software, documents,
and scripts in VTR, follows the standard MIT license described here copied below for your convenience:

The MIT License (MIT)

Copyright 2012 VTR Developers

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

• Terms and conditions for ABC is found here copied below for your convenience:

Copyright (c) The Regents of the University of California. All rights reserved.

Permission is hereby granted, without written agreement and without license or royalty fees, to use, copy,
modify, and distribute this software and its documentation for any purpose, provided that the above copy-
right notice and the following two paragraphs appear in all copies of this software.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN
“AS IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

The benchmark circuits are all open source but each have their own individual terms and conditions which are listed
in the source code of each benchmark.

Subject to these conditions, the software is provided free of charge to all interested parties.

If you do decide to use this tool, please reference our work as references are important in academia.

Donations in the form of research grants to promote further research and development on the tools will be gladly
accepted, either anonymously or with attribution on our future publications.
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VTR CHANGE LOG

Note that changes from release candidates (e.g. v8.0.0-rc1, v8.0.0-rc2) are included/repeated in the final release (e.g.
v8.0.0) change log.

11.1 Unreleased

The following are changes which have been implemented in the VTR master branch but have not yet been included in
an official release.

11.1.1 Added

11.1.2 Changed

11.1.3 Fixed

11.1.4 Deprecated

11.1.5 Removed

11.2 v8.0.0 - 2020-03-24

11.2.1 Added

• Support for arbitrary FPGA device grids/floorplans

• Support for clustered blocks with width > 1

• Customizable connection-block and switch-blocks patterns (controlled from FPGA architecture file)

• Fan-out dependent routing mux delays

• VPR can generate/load a routing architecture (routing resource graph) in XML format

• VPR can load routing from a .route file

• VPR can performing analysis (STA/Power/Area) independently from optimization (via vpr --analysis)

• VPR supports netlist primitives with multiple clocks

• VPR can perform hold-time (minimum delay) timing analysis

• Minimum delays can be annotated in the FPGA architecture file
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• Flow supports formal verification of circuit implementation against input netlist

• Support for generating FASM to drive bitstream generators

• Routing predictor which predicts and aborts impossible routings early (saves significant run-time during mini-
mum channel width search)

• Support for minimum routable channel width ‘hints’ (reduces minimum channel width search run-time if accu-
rate)

• Improved VPR debugging/verbosity controls

• VPR can perform basic netlist cleaning (e.g. sweeping dangling logic)

• VPR graphics visualizations:

– Critical path during placement/routing

– Cluster pin utilization heatmap

– Routing utilization heatmap

– Routing resource cost heatmaps

– Placement macros

• VPR can route constant nets

• VPR can route clock nets

• VPR can load netlists in extended BLIF (eBLIF) format

• Support for generating post-placement timing reports

• Improved router ‘map’ lookahead which adapts to routing architecture structure

• Script to upgrade legacy architecture files (vtr_flow/scripts/upgrade_arch.py)

• Support for Fc overrides which depend on both pin and target wire segment type

• Support for non-configurable switches (shorts, inline-buffers) used to model structures like clock-trees and non-
linear wires (e.g. ‘L’ or ‘T’ shapes)

• Various other features since VTR 7

11.2.2 Changed

• VPR will exit with code 1 on errors (something went wrong), and code 2 when unable to implement a circuit
(e.g. unroutable)

• VPR now gives more complete help about command-line options (vpr -h)

• Improved a wide variety of error messages

• Improved STA timing reports (more details, clearer format)

• VPR now uses Tatum as its STA engine

• VPR now detects missmatched architecture (.xml) and implementation (.net/.place/.route) files more robustly

• Improved router run-time and quality through incremental re-routing and improved handling of high-fanout nets

• The timing edges within each netlist primitive must now be specified in the section of the architecture file

• All interconnect tags must have unique names in the architecture file

• Connection block input pin switch must now be specified in section of the architecture file
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• Renamed switch types buffered/pass_trans to more descriptive tristate/pass_gate in architecture file

• Require longline segment types to have no switchblock/connectionblock specification

• Improve naming (true/false -> none/full/instance) and give more control over block pin equivalnce specifications

• VPR will produce a .route file even if the routing is illegal (aids debugging), however analysis results will not
be produced unless vpr --analsysis is specified

• VPR long arguments are now always prefixed by two dashes (e.g. --route) while short single-letter arguments
are prefixed by a single dash (e.g. -h)

• Improved logic optimization through using a recent 2018 version of ABC and new synthesis script

• Significantly improved implementation quality (~14% smaller minimum routable channel widths, 32-42% re-
duced wirelength, 7-10% lower critical path delay)

• Significantly reduced run-time (~5.5-6.3x faster) and memory usage (~3.3-5x lower)

• Support for non-contiguous track numbers in externally loaded RR graphs

• Improved placer quality (reduced cost round-off)

• Various other changes since VTR 7

11.2.3 Fixed

• FPGA Architecture file tags can be in arbitary orders

• SDC command arguments can be in arbitary orders

• Numerous other fixes since VTR 7

11.2.4 Removed

• Classic VPR timing analyzer

• IO channel distribution section of architecture file

11.2.5 Deprecated

• VPR’s breadth-first router (use the timing-driven router, which provides supperiour QoR and Run-time)

11.3 v8.0.0-rc2 - 2019-08-01

11.3.1 Changed

• Support for non-contiguous track numbers in externally loaded RR graphs

• Improved placer quality (reduced cost round-off)
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11.4 v8.0.0-rc1 - 2019-06-13

11.4.1 Added

• Support for arbitrary FPGA device grids/floorplans

• Support for clustered blocks with width > 1

• Customizable connection-block and switch-blocks patterns (controlled from FPGA architecture file)

• Fan-out dependent routing mux delays

• VPR can generate/load a routing architecture (routing resource graph) in XML format

• VPR can load routing from a .route file

• VPR can performing analysis (STA/Power/Area) independently from optimization (via vpr --analysis)

• VPR supports netlist primitives with multiple clocks

• VPR can perform hold-time (minimum delay) timing analysis

• Minimum delays can be annotated in the FPGA architecture file

• Flow supports formal verification of circuit implementation against input netlist

• Support for generating FASM to drive bitstream generators

• Routing predictor which predicts and aborts impossible routings early (saves significant run-time during mini-
mum channel width search)

• Support for minimum routable channel width ‘hints’ (reduces minimum channel width search run-time if accu-
rate)

• Improved VPR debugging/verbosity controls

• VPR can perform basic netlist cleaning (e.g. sweeping dangling logic)

• VPR graphics visualizations:

– Critical path during placement/routing

– Cluster pin utilization heatmap

– Routing utilization heatmap

– Routing resource cost heatmaps

– Placement macros

• VPR can route constant nets

• VPR can route clock nets

• VPR can load netlists in extended BLIF (eBLIF) format

• Support for generating post-placement timing reports

• Improved router ‘map’ lookahead which adapts to routing architecture structure

• Script to upgrade legacy architecture files (vtr_flow/scripts/upgrade_arch.py)

• Support for Fc overrides which depend on both pin and target wire segment type

• Support for non-configurable switches (shorts, inline-buffers) used to model structures like clock-trees and non-
linear wires (e.g. ‘L’ or ‘T’ shapes)

• Various other features since VTR 7
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11.4.2 Changed

• VPR will exit with code 1 on errors (something went wrong), and code 2 when unable to implement a circuit
(e.g. unroutable)

• VPR now gives more complete help about command-line options (vpr -h)

• Improved a wide variety of error messages

• Improved STA timing reports (more details, clearer format)

• VPR now uses Tatum as its STA engine

• VPR now detects missmatched architecture (.xml) and implementation (.net/.place/.route) files more robustly

• Improved router run-time and quality through incremental re-routing and improved handling of high-fanout nets

• The timing edges within each netlist primitive must now be specified in the section of the architecture file

• All interconnect tags must have unique names in the architecture file

• Connection block input pin switch must now be specified in section of the architecture file

• Renamed switch types buffered/pass_trans to more descriptive tristate/pass_gate in architecture file

• Require longline segment types to have no switchblock/connectionblock specification

• Improve naming (true/false -> none/full/instance) and give more control over block pin equivalnce specifications

• VPR will produce a .route file even if the routing is illegal (aids debugging), however analysis results will not
be produced unless vpr --analsysis is specified

• VPR long arguments are now always prefixed by two dashes (e.g. --route) while short single-letter arguments
are prefixed by a single dash (e.g. -h)

• Improved logic optimization through using a recent 2018 version of ABC and new synthesis script

• Significantly improved implementation quality (~14% smaller minimum routable channel widths, 32-42% re-
duced wirelength, 7-10% lower critical path delay)

• Significantly reduced run-time (~5.5-6.3x faster) and memory usage (~3.3-5x lower)

• Various other changes since VTR 7

11.4.3 Fixed

• FPGA Architecture file tags can be in arbitary orders

• SDC command arguments can be in arbitary orders

• Numerous other fixes since VTR 7

11.4.4 Deprecated

11.4.5 Removed

• Classic VPR timing analyzer

• IO channel distribution section of architecture file
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CONTACT

12.1 Mailing Lists

VTR maintains several mailing lists. Most users will be interested in VTR Users and VTR Announce.

• VTR Announce

VTR release announcements (low traffic)

• VTR Users: vtr-users@googlegroups.com

Discussions about using the VTR project.

• VTR Devel: vtr-devel@googlegroups.com

Discussions about VTR development.

• VTR Commits:

Revision Control Commits to the VTR project.

12.2 Issue Tracker

Please file bugs on our issue tracker.

Patches are welcome!
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GLOSSARY

$VTR_ROOT The directory containing the root of the VTR source tree.

For instance, if you extracted/cloned the VTR source into /home/myusername/vtr, your $VTR_ROOT
would be /home/myusername/vtr.

MWTA Minimum Width Transitor Area (MWTA) is a simple process technology independent unit for measuring
circuit area. It corresponds to the size the smallest (minimum width) transistor area.

For example, a 1x (unit-sized) CMOS inverter consists of two minimum width transistors (a PMOS pull-up, and
NMOS pull-down).

For more details see [BRM99] (the original presentation of the MWTA model), and [CB13] (an updated MWTA
model).
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INDICES AND TABLES

• genindex

• search
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SDC Command, 171
$VTR_ROOT, 319
--absorb_buffer_luts {on | off}

vpr command line option, 138
--acc_fac <float>

vpr command line option, 146
--activity_file <file>

vpr command line option, 159
--allow_unrelated_clustering {on | off

| auto}
vpr command line option, 140

--alpha_clustering <float>
vpr command line option, 140

--alpha_t <float>
vpr command line option, 143

--analysis
vpr command line option, 134

--astar_fac <float>
vpr command line option, 148

--auto <int>
vpr command line option, 135

--balance_block_type_utilization {on
vpr command line option, 141

--base_cost_type {demand_only
| delay_normalized |
delay_normalized_length |
delay_normalized_frequency |
delay_normalized_length_frequency}

vpr command line option, 146
--bb_factor <int>

vpr command line option, 146
--bend_cost <float>

vpr command line option, 146
--beta_clustering <float>

vpr command line option, 140
--circuit_file <file>

vpr command line option, 137
--circuit_format {auto | blif | eblif}

vpr command line option, 137
--clock_modeling {ideal | route |

dedicated_network}
vpr command line option, 137

--cluster_seed_type {blend | timing |
max_inputs}

vpr command line option, 140
--clustering_pin_feasibility_filter

{on | off}
vpr command line option, 140

--congested_routing_iteration_threshold
CONGESTED_ROUTING_ITERATION_THRESHOLD

vpr command line option, 149
--connection_driven_clustering {on |

off}
vpr command line option, 140

--const_gen_inference {none | comb |
comb_seq}

vpr command line option, 139
--constant_net_method {global | route}

vpr command line option, 136
--criticality_exp <float>

vpr command line option, 148
--device <string>

vpr command line option, 136
--disp {on | off}

vpr command line option, 135
--echo_dot_timing_graph_node { string

| int }
vpr command line option, 157

--echo_file {on | off}
vpr command line option, 136

--enable_timing_computations {on |
off}

vpr command line option, 143
--exit_before_pack {on | off}

vpr command line option, 137
--exit_t <float>

vpr command line option, 143
--first_iter_pres_fac <float>

vpr command line option, 146
--fix_pins {free | random |

<file.pads>}
vpr command line option, 143
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--full_stats
vpr command line option, 151

--gen_post_synthesis_netlist { on |
off }

vpr command line option, 151
--graphics_commands <string>

vpr command line option, 135
--help

vpr command line option, 136
--incremental_reroute_delay_ripup {on

| off | auto}
vpr command line option, 148

--init_t <float>
vpr command line option, 143

--initial_pres_fac <float>
vpr command line option, 146

--inner_loop_recompute_divider <int>
vpr command line option, 144

--inner_num <float>
vpr command line option, 143

--max_criticality <float>
vpr command line option, 148

--max_router_iterations <int>
vpr command line option, 145

--min_incremental_reroute_fanout <int>
vpr command line option, 148

--min_route_chan_width_hint <int>
vpr command line option, 147

--net_file <file>
vpr command line option, 138

--netlist_verbosity <int>
vpr command line option, 139

--num_workers <int>
vpr command line option, 136

--outfile_prefix <string>
vpr command line option, 138

--pack
vpr command line option, 134

--pack_feasible_block_array_size <int>
vpr command line option, 142

--pack_high_fanout_threshold {auto |
<int> | <string>:<int>}

vpr command line option, 142
--pack_prioritize_transitive_connectivity

{on | off}
vpr command line option, 142

--pack_transitive_fanout_threshold
<int>

vpr command line option, 142
--pack_verbosity <int>

vpr command line option, 142
--place

vpr command line option, 134

--place_algorithm {bounding_box |
path_timing_driven}

vpr command line option, 143
--place_chan_width <int>

vpr command line option, 144
--place_delay_model {delta

vpr command line option, 144
--place_delay_model_reducer {min

vpr command line option, 145
--place_delay_offset <float>

vpr command line option, 145
--place_delay_ramp_delta_threshold

<float>
vpr command line option, 145

--place_delay_ramp_slope <float>
vpr command line option, 145

--place_file <file>
vpr command line option, 138

--place_rlim_escape <float>
vpr command line option, 144

--place_tsu_abs_margin <float>
vpr command line option, 145

--place_tsu_rel_margin <float>
vpr command line option, 145

--post_place_timing_report <file>
vpr command line option, 145

--power
vpr command line option, 159

--pres_fac_mult <float>
vpr command line option, 146

--read_rr_graph <file>
vpr command line option, 138

--recompute_crit_iter <int>
vpr command line option, 144

--route
vpr command line option, 134

--route_bb_update {static
vpr command line option, 149

--route_chan_width <int>
vpr command line option, 147

--route_file <file>
vpr command line option, 138

--route_type {global | detailed}
vpr command line option, 147

--router_algorithm {breadth_first |
timing_driven}

vpr command line option, 147
--router_debug_net <int>

vpr command line option, 150
--router_debug_sink_rr

ROUTER_DEBUG_SINK_RR
vpr command line option, 150

--router_debug_sink_rr <int>
command line option, 276
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--router_first_iter_timing_report
<file>

vpr command line option, 150
--router_high_fanout_threshold

ROUTER_HIGH_FANOUT_THRESHOLD
vpr command line option, 149

--router_init_wirelength_abort_threshold
<float>

vpr command line option, 148
--router_initial_timing {all_critical

| lookahead}
vpr command line option, 150

--router_lookahead {classic
vpr command line option, 149

--router_max_convergence_count <float>
vpr command line option, 149

--router_reconvergence_cpd_threshold
<float>

vpr command line option, 150
--router_update_lower_bound_delays {on

| off}
vpr command line option, 150

--routing_budgets_algorithm { disable
| minimax | scale_delay }

vpr command line option, 149
--routing_failure_predictor {safe |

aggressive | off}
vpr command line option, 148

--save_graphics {on | off}
vpr command line option, 135

--save_routing_per_iteration {on |
off}

vpr command line option, 149
--sdc_file <file>

vpr command line option, 138
--seed <int>

vpr command line option, 143
--sink_rr_node <int>

command line option, 275
--source_rr_node <int>

command line option, 276
--strict_checks {on

vpr command line option, 137
--sweep_constant_primary_outputs {on |

off}
vpr command line option, 139

--sweep_dangling_blocks {on | off}
vpr command line option, 139

--sweep_dangling_nets {on | off}
vpr command line option, 139

--sweep_dangling_primary_ios {on |
off}

vpr command line option, 139
--target_ext_pin_util { auto |

<float> | <float>,<float>
| <string>:<float> |
<string>:<float>,<float> }

vpr command line option, 141
--target_utilization <float>

vpr command line option, 136
--td_place_exp_first <float>

vpr command line option, 144
--td_place_exp_last <float>

vpr command line option, 144
--tech_properties <file>

vpr command line option, 159
--timing_analysis {on | off}

vpr command line option, 136
--timing_driven_clustering {on|off}

vpr command line option, 140
--timing_report_detail { netlist |

aggregated | detailed }
vpr command line option, 151

--timing_report_npaths <int>
vpr command line option, 151

--timing_report_skew { on | off }
vpr command line option, 157

--timing_tradeoff <float>
vpr command line option, 144

--two_stage_clock_routing {on | off}
vpr command line option, 137

--verify_binary_search {on | off}
vpr command line option, 147

--verify_file_digests {on | off}
vpr command line option, 136

--version
vpr command line option, 136

--write_rr_graph <file>
vpr command line option, 138

-adder_cin_global
run_vtr_flow.pl command line

option, 49
-check_golden

parse_vtr_task.pl command line
option, 53

-clock<virtualornetlistclock>
SDC Option, 169

-cmos_tech <file>
run_vtr_flow.pl command line

option, 48
-create_golden

parse_vtr_task.pl command line
option, 53

-delete_intermediate_files
run_vtr_flow.pl command line

option, 48
-delete_result_files
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run_vtr_flow.pl command line
option, 48

-early
SDC Option, 170

-ending_stage <stage>
run_vtr_flow.pl command line

option, 48
-exclusive

SDC Option, 165
-from[get_clocks<clocklistorregexes>]

SDC Option, 166, 167, 169
-from[get_pins<pinlistorregexes>]

SDC Option, 171
-group{<clocklistorregexes>}

SDC Option, 165
-h

vpr command line option, 136
-hold

SDC Option, 167, 170
-j

vpr command line option, 136
-j <N>

run_vtr_task.pl command line
option, 50

-l <task_list_file>
parse_vtr_task.pl command line

option, 53
run_vtr_task.pl command line

option, 50
-late

SDC Option, 170
-limit_memory_usage

run_vtr_flow.pl command line
option, 48

-max
SDC Option, 169

-min
SDC Option, 169

-min_hard_adder_size <int>
run_vtr_flow.pl command line

option, 49
-min_hard_mult_size <int>

run_vtr_flow.pl command line
option, 49

-name<string>
SDC Option, 164

-period<float>
SDC Option, 164

-power
run_vtr_flow.pl command line

option, 48
-s <script_param> ...

run_vtr_task.pl command line
option, 50

-setup
SDC Option, 167, 170

-source
SDC Option, 170

-starting_stage <stage>
run_vtr_flow.pl command line

option, 47
-system {local | scripts}

run_vtr_task.pl command line
option, 50

-temp_dir <path>
run_vtr_flow.pl command line

option, 48
-timeout <float>

run_vtr_flow.pl command line
option, 48

-to[get_clocks<clocklistorregexes>]
SDC Option, 166–169

-to[get_pins<pinlistorregexes>]
SDC Option, 168, 171

-track_memory_usage
run_vtr_flow.pl command line

option, 48
-valgrind

run_vtr_flow.pl command line
option, 48

-waveform{<float><float>}
SDC Option, 164

<T_clock_to_Qmax="float"min="float"port="string"clock="string"/>
Tag Attribute, 100

<T_holdvalue="float"port="string"clock="string"/>
Tag Attribute, 100

<T_setupvalue="float"port="string"clock="string"/>
Tag Attribute, 100

<Tdelnum_inputs="int"delay="float"/>
Tag Attribute, 79

<areagrid_logic_tile_area="float"/>
Tag Attribute, 75

<auto_layoutaspect_ratio="float">
Tag Attribute, 60

<block_typeid="int"name="unique_identifier"width="int"height="int">
Tag Attribute, 189

<bufferslogical_effort_factor="float"/>
Tag Attribute, 111

<cbtype="pattern">intlist</cb>
Tag Attribute, 103

<chan_width_distr>content</chan_width_distr>
Tag Attribute, 77

<channelchan_width_max="int"x_min="int"y_min="int"x_max="int"y_max="int"/>
Tag Attribute, 188

<clockC_wire="float"C_wire_per_m="float"buffer_size={"float"|"auto"}/>
Tag Attribute, 105

<clock_networkname="string"num_inst="integer">
Tag Attribute, 108
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<clockname="string"num_pins="int"equivalent="{none|full}"/>
Tag Attribute, 83, 93

<coltype="string"priority="int"startx="expr"repeatx="expr"starty="expr"incry="expr"/>
Tag Attribute, 65

<completename="string"input="string"output="string"/>
Tag Attribute, 94

<complexblocklist>content</complexblocklist>
Tag Attribute, 59

<connection_blockinput_switch_name="string"/>
Tag Attribute, 75

<cornerstype="string"priority="int"/>
Tag Attribute, 61

<default_fcin_type="{frac|abs}"in_val="{int|float}"out_type="{frac|abs}"out_val="{int|float}"/>
Tag Attribute, 77

<delay_constantmax="float"min="float"in_port="string"out_port="string"/>
Tag Attribute, 99

<delay_matrixtype="{max|min}"in_port="string"out_port="string">matrix</delay>
Tag Attribute, 99

<delay>
SDC Option, 166, 169

<device>content</device>
Tag Attribute, 59

<directfrom="string"to="string">
Tag Attribute, 84

<directname="string"from_pin="string"to_pin="string"x_offset="int"y_offset="int"z_offset="int"switch_name="string"/>
Tag Attribute, 111

<directname="string"input="string"output="string"/>
Tag Attribute, 95

<dynamic_powerpower_per_instance="float"C_internal="float"/>
Tag Attribute, 102

<edgesrc_node="int"sink_node="int"switch_id="int"/>
Tag Attribute, 191

<equivalent_sites>
Tag Attribute, 83

<fc_overridefc_type="{frac|abs}"fc_val="{int|float}",port_name="{string}"segment_name="{string}">
Tag Attribute, 85

<fcin_type="{frac|abs}"in_val="{int|float}"out_type="{frac|abs}"out_val="{int|float}">
Tag Attribute, 84

<filltype="string"priority="int"/>
Tag Attribute, 61

<fixed_layoutname="string"width="int"height="int">
Tag Attribute, 60

<fromtype="string"switchpoint="int,int,int,..."/>
Tag Attribute, 117

<functype="string"formula="string"/>
Tag Attribute, 113

<grid_locx="int"y="int"block_type_id="int"width_offset="int"height_offset="int">
Tag Attribute, 190

<inputname="string"num_pins="int"equivalent="{none|full}"is_non_clock_global="{true|false}"/>
Tag Attribute, 82, 92

<latency>
SDC Option, 170

<layout/>
Tag Attribute, 59

<local_interconnectC_wire="float"factor="float"/>
Tag Attribute, 111

<locside="{left|right|bottom|top}"xoffset="int"yoffset="int">name_of_complex_logic_block.port_name[int:int]...</loc>
Tag Attribute, 86

<locxlow="int"ylow="int"xhigh="int"yhigh="int"side="{LEFT|RIGHT|TOP|BOTTOM}"ptc="int">
Tag Attribute, 190

<metadata>
Tag Attribute, 118

<metal_layername="string"Rmetal="float"Cmetal="float"/>
Tag Attribute, 108

<metaname="string">
Tag Attribute, 118

<modename="string"disable_packing="bool">
Tag Attribute, 93

<muxname="string"/>
Tag Attribute, 104

<muxname="string"input="string"output="string"/>
Tag Attribute, 96

<netlistclocklistorregexes>
SDC Option, 164

<nodeid="int"type="unique_type"direction="unique_direction"capacity="int">
Tag Attribute, 190

<opin_switchname="string"/>
Tag Attribute, 104

<outputname="string"num_pins="int"equivalent="{none|full|instance}"/>
Tag Attribute, 82, 92

<pack_patternname="string"in_port="string"out_port="string"/>
Tag Attribute, 96

<path_multiplier>
SDC Option, 168

<pb_typename="string"num_pb="int"blif_model="string"/>
Tag Attribute, 90

<perimetertype="string"priority="int"/>
Tag Attribute, 61

<pin_classtype="pin_type">
Tag Attribute, 189

<pinlocationspattern="{spread|perimeter|custom}">
Tag Attribute, 86

<pinptc="block_pin_index">name</pin>
Tag Attribute, 190

<portname="string"energy_per_toggle="float"scaled_by_static_prob="string"scaled_by_static_prob_n="string"/>
Tag Attribute, 102

<portname="string"is_clock="{0|1}clock="string"combinational_sink_ports="string1string2..."/>
Tag Attribute, 58

<powermethod="string">contents</power>
Tag Attribute, 102

<regiontype="string"priority="int"startx="expr"endx="exprrepeatx="expr"incrx="expr"starty="expr"endy="expr"repeaty="expr"incry="expr"/>
Tag Attribute, 69

<ribmetal_layer="string"y="expr"startx="expr"endx="expr"repeatx="expr"repeaty="expr"/>
Tag Attribute, 109

<rowtype="string"priority="int"starty="expr"repeaty="expr"startx="expr"/>
Tag Attribute, 66

<sb_loctype="{full|straight|turns|none}"xoffset="int"yoffset="int",switch_override="string">
Tag Attribute, 89
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<sbtype="pattern">intlist</sb>
Tag Attribute, 103

<segmentid="int"name="unique_identifier">
Tag Attribute, 189

<segmentlist>content</segmentlist>
Tag Attribute, 59

<segmentname="unique_name"length="int"type="{bidir|unidir}"freq="float"Rmetal="float"Cmetal="float">content</segment>
Tag Attribute, 103

<segmentsegment_id="int">
Tag Attribute, 191

<singletype="string"priority="int"x="expr"y="expr"/>
Tag Attribute, 64

<sitepb_type="string"pin_mapping="string"/>
Tag Attribute, 83

<sizingR_minW_nmos="float"R_minW_pmos="float"/>
Tag Attribute, 75

<sizingmux_trans_size="int"buf_size="float"/>
Tag Attribute, 189

<spinemetal_layer="string"x="expr"starty="expr"endy="expr"repeatx="expr"repeaty="expr"/>
Tag Attribute, 108

<static_powerpower_per_instance="float"/>
Tag Attribute, 102

<sub_tilename"string"capacity="{int}">
Tag Attribute, 81

<switch_blocktype="{wilton|subset|universal|custom}"fs="int"/>
Tag Attribute, 77

<switch_pointtype="{drive|tap}"name="string"yoffset="expr"xoffset="expr"xinc="expr"yinc="expr"buffer="string">
Tag Attribute, 109

<switchblock_locationspattern="{external_full_internal_straight|all|external|internal|none|custom}"internal_switch="string">
Tag Attribute, 87

<switchblock_locationtype="string"/>
Tag Attribute, 113

<switchblockname="string"type="string">
Tag Attribute, 113

<switchfuncs>
Tag Attribute, 113

<switchid="int"name="unique_identifier"type="{mux|tristate|pass_gate|short|buffer}">
Tag Attribute, 188

<switchlist>content</switchlist>
Tag Attribute, 59

<switchtype="{mux|tristate|pass_gate|short|buffer}"name="string"R="float"Cin="float"Cout="float"Cinternal="float"Tdel="float"buf_size="{auto|float}"mux_trans_size="float",power_buf_size="int"/>
Tag Attribute, 78

<tapfrom="string"to="string"locationx="expr"locationy="expr"switch="string"fc_val="float">
Tag Attribute, 110

<tilename="string"capacity="int"width="int"height="int"area="float"/>
Tag Attribute, 81

<tiles>content</tiles>
Tag Attribute, 59

<timingR="float"C="float">
Tag Attribute, 191

<timingR="float"cin="float"Cout="float"Tdel="float/>
Tag Attribute, 188

<timingR_per_meter="float"C_per_meter="float">
Tag Attribute, 189

<totype="string"switchpoint="int,int,int,..."/>
Tag Attribute, 117

<uncertainty>
SDC Option, 170

<wire_switchname="string"/>
Tag Attribute, 104

<wireconnnum_conns="expr"from_type="string,string,string,..."to_type="string,string,string,..."from_switchpoint="int,int,int,..."to_switchpoint="int,int,int,..."from_order="{fixed|shuffled}"to_order="{fixed|shuffled}"/>
Tag Attribute, 114

<x_listindex="int"info="int"/><y_listindex="int"info="int"/>
Tag Attribute, 188

<xdistr="{gaussian|uniform|pulse|delta}"peak="float"width="float"xpeak="float"dc="float"/>
Tag Attribute, 80

<ydistr="{gaussian|uniform|pulse|delta}"peak="float"width="float"xpeak="float"dc="float"/>
Tag Attribute, 81

[get_clocks<clocklistorregexes>]
SDC Option, 170

[get_ports{<I/Olistorregexes>}]
SDC Option, 169

A
architecture

vpr command line option, 134
arithmean

vpr command line option, 145
auto}

vpr command line option, 141

C
circuit

vpr command line option, 134
class="flipflop"

Tag Attribute, 98
class="lut"

Tag Attribute, 98
class="memory"

Tag Attribute, 98
command line option

--router_debug_sink_rr <int>, 276
--sink_rr_node <int>, 275
--source_rr_node <int>, 276

create_clock
SDC Command, 164

D
delta_override}

vpr command line option, 144
dynamic}

vpr command line option, 149

G
geomean}

vpr command line option, 145
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M
map}

vpr command line option, 149
max

vpr command line option, 145
median

vpr command line option, 145
MWTA, 319

O
off

vpr command line option, 141
off}

vpr command line option, 137

P
parse_vtr_task.pl command line option

-check_golden, 53
-create_golden, 53
-l <task_list_file>, 53

R
run_vtr_flow.pl command line option

-adder_cin_global, 49
-cmos_tech <file>, 48
-delete_intermediate_files, 48
-delete_result_files, 48
-ending_stage <stage>, 48
-limit_memory_usage, 48
-min_hard_adder_size <int>, 49
-min_hard_mult_size <int>, 49
-power, 48
-starting_stage <stage>, 47
-temp_dir <path>, 48
-timeout <float>, 48
-track_memory_usage, 48
-valgrind, 48

run_vtr_task.pl command line option
-j <N>, 50
-l <task_list_file>, 50
-s <script_param> ..., 50
-system {local | scripts}, 50

S
SDC Command

#(comment),\\(linecontinued),*(wildcard),{}(stringescape),
171

create_clock, 164
set_clock_groups, 165
set_clock_latency, 170
set_clock_uncertainty, 169
set_disable_timing, 171
set_false_path, 166

set_input_delay/set_output_delay,
169

set_max_delay/set_min_delay, 166
set_multicycle_path, 167

SDC Option
-clock<virtualornetlistclock>, 169
-early, 170
-exclusive, 165
-from[get_clocks<clocklistorregexes>],

166, 167, 169
-from[get_pins<pinlistorregexes>],

171
-group{<clocklistorregexes>}, 165
-hold, 167, 170
-late, 170
-max, 169
-min, 169
-name<string>, 164
-period<float>, 164
-setup, 167, 170
-source, 170
-to[get_clocks<clocklistorregexes>],

166–169
-to[get_pins<pinlistorregexes>], 168,

171
-waveform{<float><float>}, 164
<delay>, 166, 169
<latency>, 170
<netlistclocklistorregexes>, 164
<path_multiplier>, 168
<uncertainty>, 170
[get_clocks<clocklistorregexes>],

170
[get_ports{<I/Olistorregexes>}], 169

set_clock_groups
SDC Command, 165

set_clock_latency
SDC Command, 170

set_clock_uncertainty
SDC Command, 169

set_disable_timing
SDC Command, 171

set_false_path
SDC Command, 166

set_input_delay/set_output_delay
SDC Command, 169

set_max_delay/set_min_delay
SDC Command, 166

set_multicycle_path
SDC Command, 167

T
Tag Attribute
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<T_clock_to_Qmax="float"min="float"port="string"clock="string"/>,
100

<T_holdvalue="float"port="string"clock="string"/>,
100

<T_setupvalue="float"port="string"clock="string"/>,
100

<Tdelnum_inputs="int"delay="float"/>,
79

<areagrid_logic_tile_area="float"/>,
75

<auto_layoutaspect_ratio="float">,
60

<block_typeid="int"name="unique_identifier"width="int"height="int">,
189

<bufferslogical_effort_factor="float"/>,
111

<cbtype="pattern">intlist</cb>, 103
<chan_width_distr>content</chan_width_distr>,

77
<channelchan_width_max="int"x_min="int"y_min="int"x_max="int"y_max="int"/>,

188
<clockC_wire="float"C_wire_per_m="float"buffer_size={"float"|"auto"}/>,

105
<clock_networkname="string"num_inst="integer">,

108
<clockname="string"num_pins="int"equivalent="{none|full}"/>,

83, 93
<coltype="string"priority="int"startx="expr"repeatx="expr"starty="expr"incry="expr"/>,

65
<completename="string"input="string"output="string"/>,

94
<complexblocklist>content</complexblocklist>,

59
<connection_blockinput_switch_name="string"/>,

75
<cornerstype="string"priority="int"/>,

61
<default_fcin_type="{frac|abs}"in_val="{int|float}"out_type="{frac|abs}"out_val="{int|float}"/>,

77
<delay_constantmax="float"min="float"in_port="string"out_port="string"/>,

99
<delay_matrixtype="{max|min}"in_port="string"out_port="string">matrix</delay>,

99
<device>content</device>, 59
<directfrom="string"to="string">, 84
<directname="string"from_pin="string"to_pin="string"x_offset="int"y_offset="int"z_offset="int"switch_name="string"/>,

111
<directname="string"input="string"output="string"/>,

95
<dynamic_powerpower_per_instance="float"C_internal="float"/>,

102
<edgesrc_node="int"sink_node="int"switch_id="int"/>,

191
<equivalent_sites>, 83

<fc_overridefc_type="{frac|abs}"fc_val="{int|float}",port_name="{string}"segment_name="{string}">,
85

<fcin_type="{frac|abs}"in_val="{int|float}"out_type="{frac|abs}"out_val="{int|float}">,
84

<filltype="string"priority="int"/>,
61

<fixed_layoutname="string"width="int"height="int">,
60

<fromtype="string"switchpoint="int,int,int,..."/>,
117

<functype="string"formula="string"/>,
113

<grid_locx="int"y="int"block_type_id="int"width_offset="int"height_offset="int">,
190

<inputname="string"num_pins="int"equivalent="{none|full}"is_non_clock_global="{true|false}"/>,
82, 92

<layout/>, 59
<local_interconnectC_wire="float"factor="float"/>,

111
<locside="{left|right|bottom|top}"xoffset="int"yoffset="int">name_of_complex_logic_block.port_name[int:int]...</loc>,

86
<locxlow="int"ylow="int"xhigh="int"yhigh="int"side="{LEFT|RIGHT|TOP|BOTTOM}"ptc="int">,

190
<metadata>, 118
<metal_layername="string"Rmetal="float"Cmetal="float"/>,

108
<metaname="string">, 118
<modename="string"disable_packing="bool">,

93
<muxname="string"/>, 104
<muxname="string"input="string"output="string"/>,

96
<nodeid="int"type="unique_type"direction="unique_direction"capacity="int">,

190
<opin_switchname="string"/>, 104
<outputname="string"num_pins="int"equivalent="{none|full|instance}"/>,

82, 92
<pack_patternname="string"in_port="string"out_port="string"/>,

96
<pb_typename="string"num_pb="int"blif_model="string"/>,

90
<perimetertype="string"priority="int"/>,

61
<pin_classtype="pin_type">, 189
<pinlocationspattern="{spread|perimeter|custom}">,

86
<pinptc="block_pin_index">name</pin>,

190
<portname="string"energy_per_toggle="float"scaled_by_static_prob="string"scaled_by_static_prob_n="string"/>,

102
<portname="string"is_clock="{0|1}clock="string"combinational_sink_ports="string1string2..."/>,

58
<powermethod="string">contents</power>,

102
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<regiontype="string"priority="int"startx="expr"endx="exprrepeatx="expr"incrx="expr"starty="expr"endy="expr"repeaty="expr"incry="expr"/>,
69

<ribmetal_layer="string"y="expr"startx="expr"endx="expr"repeatx="expr"repeaty="expr"/>,
109

<rowtype="string"priority="int"starty="expr"repeaty="expr"startx="expr"/>,
66

<sb_loctype="{full|straight|turns|none}"xoffset="int"yoffset="int",switch_override="string">,
89

<sbtype="pattern">intlist</sb>, 103
<segmentid="int"name="unique_identifier">,

189
<segmentlist>content</segmentlist>,

59
<segmentname="unique_name"length="int"type="{bidir|unidir}"freq="float"Rmetal="float"Cmetal="float">content</segment>,

103
<segmentsegment_id="int">, 191
<singletype="string"priority="int"x="expr"y="expr"/>,

64
<sitepb_type="string"pin_mapping="string"/>,

83
<sizingR_minW_nmos="float"R_minW_pmos="float"/>,

75
<sizingmux_trans_size="int"buf_size="float"/>,

189
<spinemetal_layer="string"x="expr"starty="expr"endy="expr"repeatx="expr"repeaty="expr"/>,

108
<static_powerpower_per_instance="float"/>,

102
<sub_tilename"string"capacity="{int}">,

81
<switch_blocktype="{wilton|subset|universal|custom}"fs="int"/>,

77
<switch_pointtype="{drive|tap}"name="string"yoffset="expr"xoffset="expr"xinc="expr"yinc="expr"buffer="string">,

109
<switchblock_locationspattern="{external_full_internal_straight|all|external|internal|none|custom}"internal_switch="string">,

87
<switchblock_locationtype="string"/>,

113
<switchblockname="string"type="string">,

113
<switchfuncs>, 113
<switchid="int"name="unique_identifier"type="{mux|tristate|pass_gate|short|buffer}">,

188
<switchlist>content</switchlist>, 59
<switchtype="{mux|tristate|pass_gate|short|buffer}"name="string"R="float"Cin="float"Cout="float"Cinternal="float"Tdel="float"buf_size="{auto|float}"mux_trans_size="float",power_buf_size="int"/>,

78
<tapfrom="string"to="string"locationx="expr"locationy="expr"switch="string"fc_val="float">,

110
<tilename="string"capacity="int"width="int"height="int"area="float"/>,

81
<tiles>content</tiles>, 59
<timingR="float"C="float">, 191
<timingR="float"cin="float"Cout="float"Tdel="float/>,

188

<timingR_per_meter="float"C_per_meter="float">,
189

<totype="string"switchpoint="int,int,int,..."/>,
117

<wire_switchname="string"/>, 104
<wireconnnum_conns="expr"from_type="string,string,string,..."to_type="string,string,string,..."from_switchpoint="int,int,int,..."to_switchpoint="int,int,int,..."from_order="{fixed|shuffled}"to_order="{fixed|shuffled}"/>,

114
<x_listindex="int"info="int"/><y_listindex="int"info="int"/>,

188
<xdistr="{gaussian|uniform|pulse|delta}"peak="float"width="float"xpeak="float"dc="float"/>,

80
<ydistr="{gaussian|uniform|pulse|delta}"peak="float"width="float"xpeak="float"dc="float"/>,

81
class="flipflop", 98
class="lut", 98
class="memory", 98

V
vpr command line option

--absorb_buffer_luts {on | off}, 138
--acc_fac <float>, 146
--activity_file <file>, 159
--allow_unrelated_clustering {on |

off | auto}, 140
--alpha_clustering <float>, 140
--alpha_t <float>, 143
--analysis, 134
--astar_fac <float>, 148
--auto <int>, 135
--balance_block_type_utilization

{on, 141
--base_cost_type {demand_only

| delay_normalized |
delay_normalized_length |
delay_normalized_frequency |
delay_normalized_length_frequency},
146

--bb_factor <int>, 146
--bend_cost <float>, 146
--beta_clustering <float>, 140
--circuit_file <file>, 137
--circuit_format {auto | blif |

eblif}, 137
--clock_modeling {ideal | route |

dedicated_network}, 137
--cluster_seed_type {blend |

timing | max_inputs}, 140
--clustering_pin_feasibility_filter

{on | off}, 140
--congested_routing_iteration_threshold

CONGESTED_ROUTING_ITERATION_THRESHOLD,
149

--connection_driven_clustering {on
| off}, 140
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--const_gen_inference {none | comb
| comb_seq}, 139

--constant_net_method {global |
route}, 136

--criticality_exp <float>, 148
--device <string>, 136
--disp {on | off}, 135
--echo_dot_timing_graph_node {

string | int }, 157
--echo_file {on | off}, 136
--enable_timing_computations {on |

off}, 143
--exit_before_pack {on | off}, 137
--exit_t <float>, 143
--first_iter_pres_fac <float>, 146
--fix_pins {free | random |

<file.pads>}, 143
--full_stats, 151
--gen_post_synthesis_netlist { on

| off }, 151
--graphics_commands <string>, 135
--help, 136
--incremental_reroute_delay_ripup

{on | off | auto}, 148
--init_t <float>, 143
--initial_pres_fac <float>, 146
--inner_loop_recompute_divider

<int>, 144
--inner_num <float>, 143
--max_criticality <float>, 148
--max_router_iterations <int>, 145
--min_incremental_reroute_fanout

<int>, 148
--min_route_chan_width_hint <int>,

147
--net_file <file>, 138
--netlist_verbosity <int>, 139
--num_workers <int>, 136
--outfile_prefix <string>, 138
--pack, 134
--pack_feasible_block_array_size

<int>, 142
--pack_high_fanout_threshold {auto

| <int> | <string>:<int>}, 142
--pack_prioritize_transitive_connectivity

{on | off}, 142
--pack_transitive_fanout_threshold

<int>, 142
--pack_verbosity <int>, 142
--place, 134
--place_algorithm {bounding_box |

path_timing_driven}, 143
--place_chan_width <int>, 144
--place_delay_model {delta, 144

--place_delay_model_reducer {min,
145

--place_delay_offset <float>, 145
--place_delay_ramp_delta_threshold

<float>, 145
--place_delay_ramp_slope <float>,

145
--place_file <file>, 138
--place_rlim_escape <float>, 144
--place_tsu_abs_margin <float>, 145
--place_tsu_rel_margin <float>, 145
--post_place_timing_report <file>,

145
--power, 159
--pres_fac_mult <float>, 146
--read_rr_graph <file>, 138
--recompute_crit_iter <int>, 144
--route, 134
--route_bb_update {static, 149
--route_chan_width <int>, 147
--route_file <file>, 138
--route_type {global | detailed},

147
--router_algorithm {breadth_first

| timing_driven}, 147
--router_debug_net <int>, 150
--router_debug_sink_rr

ROUTER_DEBUG_SINK_RR, 150
--router_first_iter_timing_report

<file>, 150
--router_high_fanout_threshold

ROUTER_HIGH_FANOUT_THRESHOLD, 149
--router_init_wirelength_abort_threshold

<float>, 148
--router_initial_timing

{all_critical | lookahead}, 150
--router_lookahead {classic, 149
--router_max_convergence_count

<float>, 149
--router_reconvergence_cpd_threshold

<float>, 150
--router_update_lower_bound_delays

{on | off}, 150
--routing_budgets_algorithm {

disable | minimax | scale_delay
}, 149

--routing_failure_predictor {safe
| aggressive | off}, 148

--save_graphics {on | off}, 135
--save_routing_per_iteration {on |

off}, 149
--sdc_file <file>, 138
--seed <int>, 143
--strict_checks {on, 137
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--sweep_constant_primary_outputs
{on | off}, 139

--sweep_dangling_blocks {on | off},
139

--sweep_dangling_nets {on | off},
139

--sweep_dangling_primary_ios {on |
off}, 139

--target_ext_pin_util { auto |
<float> | <float>,<float>
| <string>:<float> |
<string>:<float>,<float> }, 141

--target_utilization <float>, 136
--td_place_exp_first <float>, 144
--td_place_exp_last <float>, 144
--tech_properties <file>, 159
--timing_analysis {on | off}, 136
--timing_driven_clustering

{on|off}, 140
--timing_report_detail { netlist |

aggregated | detailed }, 151
--timing_report_npaths <int>, 151
--timing_report_skew { on | off },

157
--timing_tradeoff <float>, 144
--two_stage_clock_routing {on |

off}, 137
--verify_binary_search {on | off},

147
--verify_file_digests {on | off},

136
--version, 136
--write_rr_graph <file>, 138
-h, 136
-j, 136
architecture, 134
arithmean, 145
auto}, 141
circuit, 134
delta_override}, 144
dynamic}, 149
geomean}, 145
map}, 149
max, 145
median, 145
off, 141
off}, 137
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