Verilog-to-Routing Documentation
Release 8.1.0-dev

VTR Developers

Jun 09, 2020

QUICK START

VTR Quick Start 3
1.1 Setting Up VTR o e e e e 3
1.2 Running VPR o e e e 4
1.3 Runningthe VTR Flow e 8
L4 NeXtSEPS . v v v v o ot e e e e e e e e e e e e e e e e e e e 15
VTR 19
2.1 VTIRCADFIoW e e 19
2.2 Get VTR . . . o e e e e e e e e e e 21
2.3 Install VTR . . . o o e e e e e e e e 23
24 Runningthe VIR Flow e 24
2.5 Benchmarks e e 25
2.6 Power Estimation e e e e e e e e e e e e 28
2.7 Tasks . .. e e e e e e e e e e e 39
2.8 run_vtr_flow ..o e e e e e e 42
2.9 run_vir_task ..o L e e e e e e e e 45
2.10 parse_vir_flow . . .o e e e e e 48
2.11 parse_vtr_task 48
2.12 Parse Configuration e e e e e e 49
2.13 PassRequirementst i i e e e e e e e e e e e e e e e 50
FPGA Architecture Description 53
3.1 Architecture Reference e e e e e e 53
3.2 Example Architecture Specification L Lo e e e 115
VPR 127
4.1 Basicflow e e e e e e e e 127
4.2 Command-line Options i i e e e e e e e e e e e e 129
43 GraphiCs o e e e e e e e e 155
44 Timing Constraints o e e e e e e e e 159
45 SDCCommands v v v it e e e e e e e e e e e e e e e e 160
4.6 File Formats ot e e e e e e e e e e e e e e e e e e 169
477 Debugging Aids e e e e e e e 189
Odin IT 191
5.1 INSTALL o e e e e e e e 191
5.2 USAGE e e e e e e 192
5.3 DOCUMENTING ODINIL e e e e e e e e e e e e 197
54 TESTINGODINII. e e e e e s e e 197
5.5 USINGMODELSIMTOTESTODINII it 198

56 CONTACT e e e e e 198

6 ABC 199
7 Tutorials 201
7.1 Design Flow Tutorials e 201
7.2 Architecture Modeling oL e e e e e e 202
7.3 Running the Titan Benchmarks L 256
7.4 Post-Implementation Timing Simulation e 258
8 [Utilities 267
8.1 FPGA Assembly (FASM) Output Support ottt e e e e 267
8.2 Router Diagnosis Tool e e e e e e e e e e 271
9 Developer Guide 273
9.1 Developer Tutorials v v i e e e e e e e e e e e e e e e e 295
9.2 VTR Support Resources i e e e e e e e e 301
10 Contact 309
10.1 Mailing Lists o v o e e e e e e e e e e e e e e 309
10.2 TIssue Tracker o o e e e 309
11 Glossary 311
12 Publications & References 313
13 Indices and tables 315
Bibliography 317
Index 321

Verilog-to-Routing Documentation, Release 8.1.0-dev

Form more information on the Verilog-to-Routing (VTR) project see VIR and VIR CAD Flow.
For documentation and tutorials on the FPGA architecture description langauge see: FPGA Architecture Description.

For more specific documentation about VPR see VPR.

QUICK START 1

Verilog-to-Routing Documentation, Release 8.1.0-dev

2 QUICK START

CHAPTER
ONE

VTR QUICK START

This is a quick introduction to VTR which covers how to run VTR and some if its associated tools (VPR, Odin II,
ABCQC).

1.1 Setting Up VTR

1.1.1 Download VTR

The first step is to download VTR and extract VTR on your local machine.

Note: Developers planning to modify VTR should clone the VTR git repository.

1.1.2 Build VTR

On most unix-like systems you can run:

> make

from the VTR root directory (hereafter referred to as $VTR_ROOT) to build VTR.

Note: Inthe VTR documentation lines starting with > (like > make above), indicate a command (i.e. make) to run
from your terminal. When the \ symbol appears at the end of a line, it indicates line continuation.

Note: $VTR_ROOT refers to the root directory of the VTR project source tree. To run the examples in this guide on
your machine, either:

* define VTR_ROOT as a variable in your shell (e.g. if ~/trees/vtr is the path to the VTR source tree on
your machine, run the equivalent of VTR_ROOT=~/trees/vtr in BASH) which will allow you to run the
commands as written in this guide, or

* manually replace $VTR_ROOT in the example commandss below with your path to the VTR source tree.

Note: If VTR fails to build you may need to install the required dependencies.

For more details on building VTR on various operating systems/platforms see Building VIR.

https://verilogtorouting.org/download/
https://github.com/verilog-to-routing/vtr-verilog-to-routing/

Verilog-to-Routing Documentation, Release 8.1.0-dev

1.2 Running VPR

Lets now try taking a simple pre-synthesized circuit (consisting of LUTs and Flip-Flops) and use the VPR tool to
implement it on a specific FPGA architecture.

1.2.1 Running VPR on a Pre-Synthesized Circuit

First, lets make a directory in our home directory where we can work:

#Move to our home directory
> cd ~

#Make a working directory
> mkdir -p vtr_work/quickstart/vpr_tseng

#Move into the working directory
> cd ~/vtr_work/quickstart/vpr_tseng

Now, lets invoke the VPR tool to implement:
¢ the tseng circuit ($VTR_ROOT/vtr_flow/benchmarks/blif/tseng.blif), on
¢ the EArch FPGA architecture (SVTR_ROOT/vtr_flow/arch/timing/EArch.xml).

We do this by passing these files to the VPR tool, and also specifying that we want to route the circuit on a version of
EArch with a routing architecture channel widthof 100 (-——route_chan_wdith 100):

> SVTR_ROOT/vpr/vpr \
SVTR_ROOT/vtr_flow/arch/timing/EArch.xml \
SVTR_ROOT/vtr_flow/benchmarks/blif/tseng.blif \

——route_chan_width 100

This will produce a large amount of output as VPR implements the circuit, but you should see something similar to:

VPR FPGA Placement and Routing.

Version: 8.1.0-dev+2b5807ect

Revision: v8.0.0-1821-g2b5807ect

Compiled: 2020-05-21T16:39:33

Compiler: GNU 7.3.0 on Linux-4.15.0-20-generic x86_64
Build Info: release VTR_ASSERT LEVEL=2

University of Toronto

verilogtorouting.org

vtr-users@googlegroups.com

This is free open source code under MIT license.

#
#Lots of output trimmed for brevity....
#

Geometric mean non-virtual intra-domain period: 6.22409 ns (160.666 MHz)
Fanout-weighted geomean non-virtual intra-domain period: 6.22409 ns (160.666 MHz)

VPR suceeded
The entire flow of VPR took 3.37 seconds (max_rss 40.7 MiB)

4 Chapter 1. VTR Quick Start

Verilog-to-Routing Documentation, Release 8.1.0-dev

which shows that VPR as successful (VPR suceeded), along with how long VPR took to run (~3 seconds in this
case).

You will also see various result files generated by VPR which define the circuit implementation:

> 1ls x.net x.place x.route

tseng.net tseng.place tseng.route

along with a VPR log file which contains what VPR printed when last invoked:

> 1ls x.log

vpr_stdout.log

and various report files describing the characteristics of the implementation:

> 1ls x.rpt

packing_pin_util.rpt report_timing.hold.rpt report_unconstrained_
—timing.hold.rpt

pre_pack.report_timing.setup.rpt report_timing.setup.rpt report_unconstrained_
—timing.setup.rpt

1.2.2 Visualizaing Circuit Implementation

Note: This section requires that VPR was compiled with graphic support. See VPR Graphics for details.

The .net, .place and . route files (along with the input .b1if and architecture .xml files) fully defined the
circuit implementation. We can visualize the circuit implementation by:

e Re-running VPR’s analysis stage (--analysis), and
* enabling VPR’s graphical user interface (-—disp on).

This is done by running the following:

> SVIR_ROOT/vpr/vpr \
OT/vtr_flow/arch/timing/EArch.xml \
SVTR_ROOT/vtr_flow/benchmarks/blif/tseng.blif \
——route_chan_width 100 \

——analysis —--disp on

which should open the VPR graphics and allow you to explore the circuit implementation.

As an exercise try the following:
* View the connectivity of a block (connections which drive it, and those which it drives)
» View the internals of a logic block (e.g. try to find the LUTs/. names and Flip-Flops/. 1atch)
* Visualize all the routed circuit connections

See also:

For more details on the various graphics options, see VPR Graphics

1.2. Running VPR 5

Verilog-to-Routing Documentation, Release 8.1.0-dev

* | Q Search
Zoom Fit
window
W i i il Toggle Nets:
— — : = Neks -
P h i Toggle Block Internal:
I (. ! L L S +
T Q- 3 Toggle Block Pin ULil:
il - : None hd
¥ Toggle Placement Macros:
: None -
Toggle RR:
T i T | None -
== : Toggle Congestion:
[”]]]H ! : Il | None v
: Toggle Routing Cong Cost:
nffim ! " | None -
b : : " Toggle Routing Bounding Box:
— : -1 +
::_:. 3 ; :]:EI]]:H Toggle Routing Util:
| None -
Eiiiiiii E : :Eiiiiiii Toggle Router Expansion Costs:
o T None hd
— R ::IE: Toggle Crit. Path:
L | None -
T T I
T Pause
Proceed
Fig. 1.1: Routed net connections of t seng on EArch.
6 Chapter 1. VTR Quick Start

Verilog-to-Routing Documentation, Release 8.1.0-dev

- Q search...] search
Zoom Fit
Window
o 11111 1 11 Toggle Nets:
o None =

___ Toggle Block Internal: |
s g I
Toggle Block Pin ULil:

MNone -

Toggle Placement Macros:

| [}

e :Jﬁ |

None -
Toggle RR:

”IE[H] MNone -

Toggle Congestion:

None v

Toggle Routing Cong Cost:

M None -
: Toggle Routing Bounding Box:
[— 4+ |
”]I”ﬂ] Toggle Routing Util:
None -

in
o

=l[EE=IEEEEEE EE

:E:i::i:i Toggle Router Expansion Costs:

EFDUﬂEQBD

. : : None -
T :_"' : -|: E m Toggle Crit. Path:
T e e — None -

W E I I I M

T T Pause

Proceed

Block #1 (n_n3199) at (3, 3) selected.

Fig. 1.2: Input (blue)/output (red) nets of block n_n3199 (highlighted green).

1.2. Running VPR 7

20

21

22

23

24

25

26

27

28

Verilog-to-Routing Documentation, Release 8.1.0-dev

Note: If you do not provide ——analysis, VPR will re-implement the circuit from scratch. If you also specify
——disp on, you can see how VPR modifies the implementation as it runs. By default ——disp on stops at key
stages to allow you to view and explore the implementation. You will need to press the Proceed button in the GUI
to allow VPR to continue to the next stage.

1.3 Running the VTR Flow

In the previous section we have implemented a pre-synthesized circuit onto a pre-existing FPGA architecture using
VPR, and visualized the result. We now turn to how we can implement our own circuit on a pre-existing FPGA
architecture.

To do this we begin by describing a circuit behaviourly using the Verilog Hardware Description Language (HDL).
This allows us to quickly and consisely define the circuit’s behaviour. We will then use the VTR Flow to synthesize
the behavioural Verilog description it into a circuit netlist, and implement it onto an FPGA.

1.3.1 Example Circuit
We will use the following simple example circuit, which causes it’s output to toggle on and off:

Listing 1.1: blink.v ($VTR_ROOT/doc/src/quickstart/
blink.v)

//A simple cricuit which blinks an LED on and off periodically
module blink (

input clk, //Input clock

input i_reset, //Input active-high reset

output o_led); //Output to LED

//Sequential logic
//
//A reset—able counter which increments each clock cycle
reg[4:0] r_counter;
always @ (posedge clk) begin
if (i_reset) begin //When reset is high, clear counter
r_counter <= 5'd0;
end else begin //Otherwise increment counter each clock (note that it will_,
—overflow back to zero)
r_counter <= r_counter + 1'bl;
end
end

//Combinational logic
//
//Drives o_led high if count is below a threshold
always @ (x) begin
if (r_counter < 5'dl6) begin
o_led <= 1'bl;
end else begin
o_led <= 1'b0;
end
end

(continues on next page)

8 Chapter 1. VTR Quick Start

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

endmodule

This Verilog creates a sequential 5-bit register (r_counter) which increments every clock cycle. If the count is
below 16 it drives the output (o_1ed) high, otherwise it drives it low.

1.3.2 Manually Running the VTR Flow

Lets start by making a fresh directory for us to work in:

> mkdir -p ~/vtr_work/quickstart/blink_manual
> cd ~/vtr_work/quickstart/blink_manual

Next we need to run the three main sets of tools:

e Odin II performs ‘synthesis’ which converts our behavioural Verilog (. v file) into a circuit netlist (.b11 f file)
consisting of logic equations and FPGA architecture primitives (Flip-Flops, adders etc.),

* ABC performs ‘logic optimization’ which simplifies the circuit logic, and ‘technology mapping’ which converts
logic equations into the Look-Up-Tables (LUTs) available on an FPGA, and

e VPR which performs packing, placement and routing of the circuit to implement it on the targetted FPGA
architecture.

Synthesizing with ODIN Il

First we’ll run ODIN II on our Verilog file to synthesize it into a circuit netlist, providing the options:

e —a $VTR_ROOT/vtr_flow/arch/timing/EArch.xml which specifies what FPGA architecture we
are targetting,

* -V $VTR_ROOT/doc/src/quickstart/blink.v which specifies the verilog file we want to synthe-
size, and

* —0 blink.odin.blif which specifies the name of the generated .b1if circuit netlist.

The resulting command is:

> SVTR_ROOT/ODIN_II/odin_ITI \
-a SVTR_ROOT/vtr_flow/arch/timing/EArch.xml \
-V SVTR_ROOT/doc/src/quickstart/blink.v \

-0 blink.odin.blif

which when run should end with something like:

Total time: 14.7ms
Odin ran with exit status: 0
Odin II took 0.01 seconds (max_rss 5.1 MiB)

where Odin ran with exit status: 0 indicates Odin successfully synthesized our verilog.

We can now take a look at the circuit which ODIN produced (b1ink.odin.bl1if). The file is long and likely harder
to follow than our code in blink.v; however it implements the same functionality. Some interesting highlights are
shown below:

1.3. Running the VTR Flow 9

Verilog-to-Routing Documentation, Release 8.1.0-dev

Listing 1.2: Instantiations of rising-edge triggered Latches (i.e. Flip-
Flops) in blink.odin.blif (implements part of r_counter in
blink.v)

.latch blink"nMUX~0"MUX_2~23 blink”r_counter~0_FF re blink”clk 3
.latch blink"nMUX~0"MUX_2~27 blink”r_counter~4_FF re blink”clk 3

Listing 1.3: Adder primitive instantiations in blink.odin.blif,
used to perform addition (implements part of the + operator in blink.v)

.subckt adder a[0]=blink”r_counter~0_FF b[0]=vcc cin[0]=blink”ADD~2-0[0]\
cout [0]=blink”ADD~2-1[0] sumout[0]=blink”ADD~2-1[1]

.subckt adder a[0]=blink”r_counter~1_FF b[0]=gnd cin[0]=blink”"ADD~2-1[0]\
cout [0]=blink”"ADD~2-2[0] sumout[0]=blink”ADD~2-21[1]

Listing 1.4: Logic equation (.names truth-table) in blink.odin.
blif, implementing logical OR (implements part of the < operator in
blink.v)

.names blink "LT~4"GT~10 blink"LT~4"GT~12 blink"LT~4"GT~14 blink "LT~4"GT~16 blink LT~4"
<GT~18 blink LT~4"10R~9
1--—- 1

|
|
|
s
|
o e

See also:

For more information on the BLIF file format see BLIF Netlist (.blif).

Optimizing and Technology Mapping with ABC

Next, we’ll optimize and technology map our circuit using ABC, providing the option:
e —c <script>, where <script> is a set of commands telling ABC how to synthesize our circuit.

We’ll use the following, simple ABC commands:

read blink.odin.blif; #Read the circuit synthesized by,
—~ODIN

if -K 6; #Technology map to 6 input LUTs_,
— (6-LUTs)

write_hie blink.odin.blif blink.abc_no_clock.blif #Write new circuit to blink.abc

—no_clock.blif

Note: Usually you should use a more complicated script (such as that used by run_vtr_flow) to ensure ABC optitmizes
your circuit well.

The corresponding command to run is:

> SVTR_ROOT/abc/abc \
-c 'read blink.odin.blif; if -K 6; write_hie blink.odin.blif blink.abc_no_clock.

—pDILIL’ (continues on next page)

10 Chapter 1. VTR Quick Start

20

21

22

23

24

25

26

27

28

29

30

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

When run, ABC’s output should look similar to:

ABC command line: "read blink.odin.blif; if -K 6; write_hie blink.odin.blif blink.abc_
—no_clock.blif".

Hierarchy reader converted 6 instances of blackboxes.
The network was strashed and balanced before FPGA mapping.
Hierarchy writer reintroduced 6 instances of blackboxes.

If we now inspect the produced BLIF file (blink.abc_no_clock.blif) we see that ABC was able to signifi-
cantly simplify and optimize the circuit’s logic (compared to blink.odin.blif):

Listing 1.5: blink.abc_no_clock.blif

Benchmark "blink" written by ABC on Tue May 19 15:42:50 2020
.model blink

.inputs blink”clk blink”i_reset

.outputs blink”o_led

.latch nl9 blink”r_counter~0_FF 2
.latch n24 blink”r_ counter~4_ FF 2
.latch n29 blink”r_counter~3_FF 2
.latch n34 blink”r_counter~2_FF 2
.latch n39 blink”r_ counter~1_FF 2

.subckt adder a[0]=blink”r_counter~0_FF b[0]=vcc cin[0]=blink”ADD~2-0[0]
—cout [0]=blink"ADD~2-1[0] sumout[0]=blink”ADD~2-1[1]

.subckt adder a[0]=blink”r_counter~1_FF b[0]=gnd cin[0]=blink”ADD~2-1[0]_,
—cout [0]=blink”"ADD~2-2[0] sumout[0]=blink”ADD~2-2[1]

.subckt adder a[0]=blink”r_counter~2_FF b[0]=gnd cin[0]=blink”ADD~2-2[0]_,
—cout [0]=blink"ADD~2-3[0] sumout[0]=blink"ADD~2-3[1]

.subckt adder a[0]=blink”r_counter~3_FF b[0]=gnd cin[0]=blink”ADD~2-3[0]
—cout [0]=blink"ADD~2-4[0] sumout[0]=blink”ADD~2-4[1]

.subckt adder a[0]=blink”r_counter~4_FF b[0]=gnd cin[0]=blink”ADD~2-4[0]_,
—cout [0]=blink”"ADD~2-5[0] sumout[0]=blink”ADD~2-5[1]

.subckt adder a[0]l=gnd b[0]=gnd cin[0]=unconn cout[0]=blink”ADD~2-0[0]
—sumout [0]=blink"ADD~2-0~dummy_output~0~1

.names blink”i_reset blink”ADD~2-1[1] nl9
01 1

.names blink”i_reset blink”ADD~2-5[1] n24
01 1

.names blink”i_reset blink”ADD~2-4[1] n29
01 1

.names blink”i_reset blink”ADD~2-3[1] n34
01 1

.names blink”i_reset blink”ADD~2-2[1] n39
01 1

.names vcc

.names gnd

.names unconn

(continues on next page)

1.3. Running the VTR Flow 11

39

40

41

42

43

44

45

46

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

0

.names blink”r_counter~4_FF blink”o_led
01

.end

.model adder

.inputs af[0] b[0] cin[0]
.outputs cout[0] sumout[0]
.blackbox

.end

ABC has kept the . latch and .subckt adder primitives, but has significantly simplified the other logic (.
names).

However, there is an issue with the above BLIF produced by ABC: the latches (rising edge Flip-Flops) do not have
any clocks or edge sensitivity specified, which is information required by VPR.

Re-inserting clocks

We will restore the clock information by running a script which will transfer that information from the original ODIN
BLIF file (writing it to the new file blink .pre-vpr.blif):

> SVTR_ROOT/vtr_flow/scripts/restore_multiclock_latch.pl \
blink.odin.blif \
blink.abc_no_clock.blif \
blink.pre-vpr.blif

If we inspect blink.pre-vpr.blif we now see that the clock (b1ink”~clk) has been restored to the Flip-Flops:

> grep 'latch' blink.pre-vpr.blif

.latch nl9 blink”r_counter~0_FF re blink”clk
.latch n24 blink”"r_counter~4_FF re blink”clk
.latch n29 blink”r_counter~3_FF re blink”clk
.latch n34 blink”r_counter~2_FF re blink”clk
.latch n39 blink”r_counter~1_FF re blink”clk

w w w w w

Implementing the circuit with VPR

Now that we have the optimized and technology mapped netlist (blink.pre-vpr.blif), we can invoke VPR to
implement it onto the EArch FPGA architecture (in the same way we did with the t seng design earlier). However,
since our BLIF file doesn’t match the design name we explicitly specify:

¢ blink as the circuit name, and
¢ the input circuit file with ——circuit_file.
to ensure the resulting .net, .place and . route files will have the correct names.

The resulting command is:

(continues on next page)

12 Chapter 1. VTR Quick Start

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

blink —--circuit_file blink.pre-vpr.blif \
——route_chan_width 100

and after VPR finishes we should see the resulting implementation files:

> 1ls x.net x.place *x.route

blink.net blink.place Dblink.route

We can then view the implementation as usual by appending ——analysis —--disp on to the command:

>

_ROOT/vtr_flow/arch/timing/EArch.xml \
blink —--circuit_file blink.pre-vpr.blif \
——route_chan_width 100 \

——analysis —--disp on
v || @ search search
Zoom Fit
window
Toggle Nets:
Nekts -

Toggle Block Internal:

5 -
Toggle Block Pin ULil:
None -
Toggle Placement Macros:
None hd
Toggle RR:

None A

Toggle Congestion:

None v

Toggle Routing Cong Cost:

None hd

Toggle Routing Bounding Box:
-1 +
Toggle Routing ULil:

None -
Toggle Router Expansion Costs:

None -
PrTTorTroToroTY Toggle Crit. Path:
RERERERE None -
RERERERS S
B
IR ; Proceed

Fig. 1.3: blink. v circuit implementation on the EArch FPGA architecture as viewed in the VPR GUI

1.3. Running the VTR Flow 13

Verilog-to-Routing Documentation, Release 8.1.0-dev

1.3.3 Automatically Running the VTR Flow

Running each stage of the flow manually is time consuming (and potentially error prone). For convenience, VTR
provides a script (run_vtr_flow) which automates this process.

Lets make a new directory to work in named blink_run_flow:

> mkdir -p ~/vtr_work/quickstart/blink_run_flow
> cd ~/vtr_work/quickstart/blink_run_flow

Now lets run the script (SVTR_ROOT/vtr_flow/scripts/run_vtr_flow.pl) passing in:
* The circuit verilog file ($VTR_ROOT/doc/src/quickstart/blink.v)
¢ The FPGA architecture file (SVTR_ROOT/vtr_flow/arch/timing/EArch.xml)
and also specifying the options:
e —temp_dir . torun in the current directory (. on unix-like systems)
e ——route_chan_width 100 afixed FPGA routing architecture channel width.

The resulting command is:

> SVTR_ROOT/vtr_flow/scripts/run_vtr_flow.pl \
SVTR_ROOT/doc/src/quickstart/blink.v \
SVTR_ROOT/vtr_flow/arch/timing/EArch.xml \
-temp_dir . \
——route_chan_width 100

Note: Options unrecognized by run_vtr_flow (like ——route_chan_width) are passed on to VPR.

which should produce output similar to:

EArch/blink OK (took 0.26 seconds)

There are also multiple log files (including for ABC, ODIN and VPR), which by convention the script names with the
.out suffix:

> 1s x.out

0_blackboxing_latch.out odin.out report_clocks.abc.out vanilla_restore_
—clocks.out
abc0.out report_clk.out restore_latchO.out vpr.out

With the main log files of interest including the ODIN log file (odin . out), log files produced by ABC (e.g. abcO.
out), and the VPR log file (vpr . out).

Note: ABC may be invoked multiple times if a circuit has multiple clock domains, producing multiple log files
(abc0.out, abcl.out,...)

You will also see there are several BLIF files produced:

> 1s x.blif

0O_blink.abc.blif O_blink.raw.abc.blif Dblink.odin.blif
O_blink.odin.blif Dblink.abc.blif blink.pre-vpr.blif

14 Chapter 1. VTR Quick Start

Verilog-to-Routing Documentation, Release 8.1.0-dev

With the main files of interest being blink.odin.blif (netlist produced by ODIN), blink.abc.blif (final
netlist produced by ABC after clock restoration), blink.pre—vpr.blif netlist used by VPR (usually identical to
blink.abc.blif).

Like before, we can also see the implementation files generated by VPR:

> 1ls x.net x.place x.route

blink.net blink.place Dblink.route

which we can visualize with:

> SVTR_ROOT/vpr/vpr \
SVTR_ROOT/vtr_flow/arch/timing/EArch.xml \
blink --circuit_file blink.pre-vpr.blif \
——route_chan_width 100 \
——analysis —--disp on

1.4 Next Steps

Now that you’ve finished the VTR quickstart, you’re ready to start experimenting and using VTR.
Here are some possible next steps for users wishing to use VTR:
* Try modifying the Verilog file (e.g. b1ink.v) or make your own circuit and try running it through the flow.

* Learn about FPGA architecture modelling (7Tutorials, Reference), and try modifying a copy of EArch to see
how it changes the implementation of blink.v.

¢ Read more about the VTR CAD Flow, and Task automation framework.
* Find out more about using other benchmark sets, like how to run the Titan Benchmark Suite.
* Discover how to generate FASM for bitstream creation.
* Suggest or make enhancements to VIR’s documentation.
Here are some possible next steps for developers wishing to modify and improve VTR:
* Try the next steps listed for users above to learn how VTR is used.
» Work through the new developer tutorial.
* Read through the developer guide.
* Look for open issues to which you can contribute.
* Begin exploring the source code for the main tools in VIR (e.g. VPR in $VTR_ROOT/vpr/src).
Building VTR
Overview
VTR uses [CMake](https://cmake.org) as it’s build system.
CMake provides a portable cross-platform build systems with many useful features.
Tested Compilers ## VTR requires a C++-14 compliant compiler. The following compilers are tested with VTR:
* GCC/G++:5,6,7,8,9
* Clang/Clang++: 3.8, 6

1.4. Next Steps 15

https://cmake.org

Verilog-to-Routing Documentation, Release 8.1.0-dev

Other compilers may work but are untested (your milage may vary).

Unix-like ## For unix-like systems we provide a wrapper Makefile which supports the traditional make and make
clean commands, but calls CMake behind the scenes.

Dependencies
For the basic tools you need:
¢ Bison & Flex
¢ cmake, make
¢ A modern C++ compiler supporting C++14 (such as GCC >= 4.9 or clang >= 3.6)
For the VPR GUI you need:
* Cairo
* FreeType
o Xft (libXft + 1ibX11)
* fontconfig
* libgtk-3-dev
For the [regression testing and benchmarking](README.developers.md#running-tests) you will need:
e Perl + List::MoreUltils
e Python
* time
It is also recommended you install the following development tools:
e git
* ctags
e gdb
e valgrind
¢ clang-format-7
For Docs generation you will need:
* Doxygen
* python-sphinx
¢ python-sphinx-rtd-theme
* python-recommonmark
Debian & Ubuntu
The following should be enough to get the tools, VPR GUI and tests going on a modern Debian or Ubuntu system:
“““shell apt-get install

build-essential flex bison cmake fontconfig libcairo2-dev libfontconfigl-dev libx11-dev libxft-dev libgtk-
3-dev perl liblist-moreutils-perl python time

[N

For documentation generation these additional packages are required:

“““shell apt-get install

16 Chapter 1. VTR Quick Start

Verilog-to-Routing Documentation, Release 8.1.0-dev

doxygen python-sphinx python-sphinx-rtd-theme python-recommonmark

[N

For development the following additional packages are useful:
“““shell apt-get install
git valgrind gdb ctags

Using Nix ##H

Although the recommended platform is Debian or Ubuntu, Nix can be used to build VTR on other platforms, such as
MacOS.

If you don’t have [Nix](https://nixos.org/nix/), you can [get it](https://nixos.org/nix/download.html) with:
"shell $ curl -L https://nixos.org/nix/install | sh °

These commands will set up dependencies for Linux and MacOS and build VTR:

“shell #In the VIR root $ nix-shell dev/nix/shell.nix $ make °

Building using the Makefile wrapper ### Run make from the root of the VTR source tree

"shell #In the VIR root $ make ... [100%] Built target vpr °

Specifying the build type #### You can specify the build type by passing the BUILD_TYPE parameter.
For instance to create a debug build (no optimization and debug symbols):

"shell #In the VTR root $ make BUILD_TYPE=debug ... [100%] Built target vpr °
Passing parameters to CMake #### You can also pass parameters to CMake.

For instance to set the CMake configuration variable VTR_ENABLE_SANITIZE on:

“shell #In the VTR root $ make CMAKE_PARAMS="-DVTR_ENABLE_SANITIZE=ON"
[100%] Built target vpr °

Both the BUILD_TYPE and CMAKE_PARAMS can be specified concurrently: “shell #In the VTR root $
make BUILD_TYPE=debug CMAKE_PARAMS="-DVTR_ENABLE_SANITIZE=ON" ... [100%] Built
target vpr °

Using CMake directly ### You can also use cmake directly.

First create a build directory under the VTR root:

“““shell #In the VTR root $ mkdir build $ cd build

#Call cmake pointing to the directory containing the root CMakeLists.txt $ cmake ..
#Build $ make "

Changing configuration on the command line #### You can change the CMake configuration by passing com-
mand line parameters.

For instance to set the configuration to debug:
“““shell #In the build directory $ cmake . -DCMAKE_BUILD_TYPE=debug
#Re-build $ make ™™

Changing configuration interactively with ccmake #### You can also use ccmake to to modify the build config-
uration.

“““shell #From the build directory $ ccmake . #Make some configuration change

1.4. Next Steps 17

https://nixos.org/nix/
https://nixos.org/nix/download.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

#Build $ make ™
Other platforms

CMake supports a variety of operating systems and can generate project files for a variety of build systems and IDEs.
While VTR is developed primarily on Linux, it should be possible to build on different platforms (your milage may
vary). See the [CMake documentation](https://cmake.org) for more details about using cmake and generating project
files on other platforms and build systems (e.g. Eclipse, Microsoft Visual Studio).

Microsoft Windows
NOTE: VTR support on Microsoft Windows is considered experimental

Cygwin #### [Cygwin](https://www.cygwin.com/) provides a POSIX (i.e. unix-like) environment for Microsoft
Windows.

From within the cygwin terminal follow the Unix-like build instructions listed above.
Note that the generated executables will rely upon Cygwin (e.g. cygwinl.dll) for POSIX compatibility.

Cross-compiling from Linux to Microsoft Windows with MinGW-W64 #### It is possible to cross-compile from
a Linux host system to generate Microsoft Windows executables using the [MinGW-W64](https://mingw-w64.org)
compilers. These can usually be installed with your Linux distribution’s package manager (e.g. sudo apt-get install
mingw-w64 on Debian/Ubuntu).

Unlike Cygwin, MinGW executables will depend upon the standard Microsoft Visual C++ run-time.
To build VTR using MinGW: ""“shell #In the VTR root $ mkdir build_win64 $ cd build_win64

#Run cmake specifying the toolchain file to setup the cross-compilation environment $ cmake .. -
DCMAKE_TOOLCHAIN_FILE ../cmake/toolchains/mingw-linux-cross-compile-to-windows.cmake

[NNN

#Building will produce Windows executables $ make

Note that by default the MS Windows target system will need to dynamically link to the libgcc and libstdc++ DLLs.
These are usually found under /ust/lib/gcc on the Linux host machine.

See the [toolchain file](cmake/toolchains/mingw-linux-cross-compile-to-windows.cmake) for more details.

Microsoft Visual Studio #### CMake can generate a Microsft Visual Studio project, enabling VTR to be built
with the Microsoft Visual C++ (MSVC) compiler.

Installing additional tools ##### VTR depends on some external unix-style tools during it’s buid process; in
particular the flex and bison parser generators.

One approach is to install these tools using [MSYS2](http://www.msys2.org/), which provides up-to-date versions of
many unix tools for MS Windows.

To ensure CMake can find the flex and bison executables you must ensure that they are available on your system path.
For instance, if MSYS2 was installed to C:msys64 you would need to ensure that C:msys64usrbin was included in the
system PATH environment variable.

Generating the Visual Studio Project ##### CMake (e.g. the cmake-gui) can then be configured to generate the
MSVC project.

18 Chapter 1. VTR Quick Start

https://cmake.org
https://www.cygwin.com/
https://mingw-w64.org
http://www.msys2.org/

CHAPTER
TWO

VTR

The Verilog-to-Routing (VTR) project [RLY+12][LAK+14] is a world-wide collaborative effort to provide a open-
source framework for conducting FPGA architecture and CAD research and development. The VTR design flow takes
as input a Verilog description of a digital circuit, and a description of the target FPGA architecture.

It then perfoms:
* Elaboration & Synthesis (Odin IT)
* Logic Optimization & Technology Mapping (ABC)
 Packing, Placement, Routing & Timing Analysis (VPR)
Generating FPGA speed and area results.

VTR also includes a set of benchmark designs known to work with the design flow.

2.1 VTR CAD Flow

In the standard VTR Flow (Fig. 2.1), Odin II converts a Verilog Hardware Destription Language (HDL) design into
a flattened netlist consisting of logic gates, flip-flops, and blackboxes representing heterogeneous blocks (e.g. adders,
multipliers, RAM slices) [JKGS10].

Next, the ABC synthesis package is used to perform technology-independent logic optimization, and technology-maps
the circuit into LUTs [SG][PHMBO7][CCMBO07]. The output of ABC is a .blif format netlist of LUTs, flip flops, and
blackboxes.

VPR then packs this netlist into more coarse-grained logic blocks, places and then routes the circuit
[BRM99][Bet98][BR96a][BRO6b][BRO7b][BRO7a][MBRO9][MBROO][BROO]. Generating output files for each
stage. VPR will analyze the resulting implementation, producing various statistics such as the minimum number
of tracks per channel required to successfully route, the total wirelength, circuit speed, area and power. VPR can also
produce a post-implementation netlist for simulation and formal verification.

19

Verilog-to-Routing Documentation, Release 8.1.0-dev

FPGA
- h
(RR Sias) (Architecture)

Device
: \ @ Description
, |
1 | H
' ' t Desi
: : Odin I i Q‘It?;pus : Yosys L) peim
1 H CAD Tool
i I E l i |:| Stage
' | I : pp——
1 : ‘ VTR Flow
i I I''| vQM to BLIF | | ABC ~—) o
! | | ! i ‘“ \) Titan Flow
1 T | T=m——— ’
i : A/ﬁ/ ! E— Standard
! 1 | ---=> Optional
i I ABC I]
! [w1
: | A T
- Ll
E | = = Tech. Mapped i :
' I P Netlist /- R
: | e i :
! £ g pipigbyipeipepuinies I
' [VPR I . ‘ Other 1
H T Pack - i
. I ! Pack I l| / e -)} Pack i
1 I I ——————— F------
i ¥ | 11 P Voo
1 s] I [
\ T VPR 1 I Other :
B LT TR 145 Place il / e -)} Place ‘
! I L} 3 I 7777777 r 7777777
: | l : I R ‘
L
! T VPR il Routi A Other :
e Ly Route 1 PRI ‘ Route ‘
1 t 1 .
: I b
H I d N
1 [~
. | ! ! : . S
, H VPR ! . |
oo N Analysis 1l ! Bitstream Gen.
I 1 ’l I ,,,,,,, :, ,,,,,,,
gl debink plsianie wishuid) |
‘//// \ ,,,,, \'I ,,,,,,
Post-Impl. Area Timing Power . i
Netlist / Metrics / Metrics Metrics J Sitsiean 4

Fig. 2.1: VTR CAD flow (and variants)

20 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.1.1 CAD Flow Variations

Titan CAD Flow

The Titan CAD Flow [MWL+13][MWL+15] interfaces Intel’s Quartus tool with VPR. This allows designs requiring
industrial strength language coverage and IP to be brought into VPR.

Other CAD Flow Variants

Many other CAD flow variations are possible.

For instance, it is possible to use other logic synthesis tools like Yosys [Wol] to generate the design netlist. One could
also use logic optimizers and technology mappers other than ABC; just put the output netlist from your technology-
mapper into .blif format and pass it into VPR.

It is also possible to use tools other than VPR to perform the different stages of the implementation.

For example, if the logic block you are interested in is not supported by VPR, your CAD flow can bypass VPR’s packer
by outputting a netlist of logic blocks in .net format. VPR can place and route netlists of any type of logic block — you
simply have to create the netlist and describe the logic block in the FPGA architecture description file.

Similarly, if you want only to route a placement produced by another CAD tool you can create a .place file, and have
VPR route this pre-existing placement.

If you only need to analyze an implementation produced by another tool, you can create a .route file, and have VPR
analyze the implementation, to produce area/delay/power results.

Finally, if your routing architecture is not supported by VPR’s architecture generator, you can describe your routing
architecture in an rr_graph.xml file, which can be loaded directly into VPR.

2.1.2 Bitstream Generation
The technology mapped netlist and packing/placement/routing results produced by VPR contain the information
needed to generate a device programming bitstreams.

VTR focuses on the core physical design optimization tools and evaluation capabilities for new architectures and does
not directly support generating device programming bitstreams. Bitstream generators can either ingest the implemen-
tation files directly or make use of VTR utilities to emit FASM.

2.2 Get VTR

2.2.1 How to Cite

Citations are important in academia, as they ensure contributors recieve credit for their efforts. Therefore please use
the following paper as a general citation whenever you use VTR:

K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. ElDafrawy, J.-P. Legault, E. Sha, A. G. Graham, J. Wu,
M. J. P. Walker, H. Zeng, P. Patros, J. Luu, K. B. Kent and V. Betz “VTR 8: High Performance CAD and
Customizable FPGA Architecture Modelling”, ACM TRETS, 2020

Bibtex:

2.2, Get VTR 21

Verilog-to-Routing Documentation, Release 8.1.0-dev

Qarticle{vtrs,

title={VTR 8: High Performance CAD and Customizable FPGA Architecture Modelling},

author={Murray, Kevin E. and Petelin, Oleg and Zhong, Sheng and Wang, Jai Min and_
—ElDafrawy, Mohamed and Legault, Jean-Philippe and Sha, Eugene and Graham, Aaron G.
—and Wu, Jean and Walker, Matthew J. P. and Zeng, Hanging and Patros, Panagiotis and_
—Luu, Jason and Kent, Kenneth B. and Betz, Vaughn},

journal={ACM Trans. Reconfigurable Technol. Syst.},

year={2020}

We are always interested in how VTR is being used, so feel free email the vtr-users list with how you are using VTR.

2.2.2 Download

The official VTR release is available from:

https://verilogtorouting.org/download

2.2.3 Release

The VTR 8.1 release provides the following:
¢ benchmark circuits,
» sample FPGA architecture description files,
¢ the full CAD flow, and
* scripts to run that flow.

The FPGA CAD flow takes as input, a user circuit (coded in Verilog) and a description of the FPGA architecture. The
CAD flow then maps the circuit to the FPGA architecture to produce, as output, a placed-and-routed FPGA. Here are
some highlights of the 8.1 full release:

* Timing-driven logic synthesis, packing, placement, and routing with multi-clock support.
* Power Analysis
* Benchmark digital circuits consisting of real applications that contain both memories and multipliers.
Seven of the 19 circuits contain more than 10,000 6-LUTs. The largest of which is just under 100,000 6-LUTs.
» Sample architecture files of a wide range of different FPGA architectures including:
1. Timing annotated architectures

2. Various fracturable LUTs (dual-output LUTs that can function as one large LUT or two smaller LUTs with
some shared inputs)

3. Various configurable embedded memories and multiplier hard blocks
4. One architecture containing embedded floating-point cores, and
5. One architecture with carry chains.

* A front-end Verilog elaborator that has support for hard blocks.

This tool can automatically recognize when a memory or multiplier instantiated in a user circuit is too large
for a target FPGA architecture. When this happens, the tool can automatically split that memory/multiplier
into multiple smaller components (with some glue logic to tie the components together). This makes it easier

22 Chapter 2. VTR

https://verilogtorouting.org/contact/
https://verilogtorouting.org/download

Verilog-to-Routing Documentation, Release 8.1.0-dev

to investigate different hard block architectures because one does not need to modify the Verilog if the circuit
instantiates a memory/multiplier that is too large.

* Packing/Clustering support for FPGA logic blocks with widely varying functionality.

This includes memories with configurable aspect ratios, multipliers blocks that can fracture into smaller multi-
pliers, soft logic clusters that contain fracturable LUTs, custom interconnect within a logic block, and more.

» Ready-to-run scripts that guide a user through the complexities of building the tools as well as using the tools to
map realistic circuits (written in Verilog) to FPGA architectures.

* Regression tests of experiments that we have conducted to help users error check and/or compare their work.

Along with experiments for more conventional FPGAs, we also include an experiment that explores FPGAs
with embedded floating-point cores investigated in [HYL+09] to illustrate the usage of the VTR framework to
explore unconventional FPGA architectures.

2.2.4 Development Trunk

The development trunk for the Verilog-to-Routing project is hosted at:
https://github.com/verilog-to-routing/vtr-verilog-to-routing

Unlike the nicely packaged offical releases the code in a constant state of flux. You should expect that the tools are not
always stable and that more work is needed to get the flow to run.

2.3 Install VTR

1. Download the VTR release
2. Unpack the release in a directory of your choice (herafter referred to as $VTR_ROOT)
3. Navigate to $VTR_ROOT and run

make

which will build all the required tools.

Warning: $V7TR_ROOT should be replaced with the path to the root of VTR source tree on your machine.

The complete VTR flow has been tested on 64-bit Linux systems. The flow should work in other platforms (32-bit
Linux, Windows with cygwin) but this is untested.

See also:
More information about building VTR can be found in the Developer Guide
Please let us know your experience with building VTR so that we can improve the experience for others.

The tools included official VTR releases have been tested for compatibility. If you download a different version of
those tools, then those versions may not be mutually compatible with the VTR release.

2.3. Install VTR 23

https://github.com/verilog-to-routing/vtr-verilog-to-routing

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.3.1 Verifying Installation

To verfiy that VTR has been installed correctly run:

’$VTR_ROOT/vtr_flow/scripts/run_vtr_task.pl basic_flow

The expected output is:

’k6_NlO_memSizel6384_memData64_40nm_timing/ch_intrinsics...OK

2.4 Running the VTR Flow

VTR is a collection of tools that perform the full FPGA CAD flow from Verilog to routing.
The design flow consists of:

* Odin II (Logic Synthesis)

* ABC (Logic Optimization & Technology Mapping)

¢ VPR (Pack, Place & Route)
There is no single executable for the entire flow.

Instead, scripts are provided to allow the user to easily run the entire tool flow. The following provides instructions on
using these scripts to run VTR.

2.4.1 Running a Single Benchmark

The run_vtr_flow script is provided to execute the VTR flow for a single benchmark and architecture.

Note: In the following $VTR_ROOT means the root directory of the VTR source code tree.

SVTR_ROOT/vtr_flow/scripts/run_vtr_flow.pl <circuit_file> <architecture_file>

It requires two arguments:
e <circuit_file> A benchmark circuit, and
e <architecture_file> an FPGA architecture file

Circuits can be found under:

’$VTR_ROOT/vtr_flow/benchmarks/

Architecture files can be found under:

’$VTR7ROOT/vtr7flow/arch/

The script can also be used to run parts of the VIR flow.
See also:

run_vtr_flow for the detailed command line options of run_vtr_flow.pl.

24 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.4.2 Running Multiple Benchmarks & Architectures with Tasks

VTR also supports tasks, which manage the execution of the VTR flow for multiple benchmarks and architectures. By
default, tasks execute the run_vtr_flow for every circuit/architecture combination.

VTR provides a variety of standard tasks which can be found under:

’$VTR_ROOT/vtr_flow/tasks

Tasks can be executed using run_vtr_task:

’$VTR_ROOT/vtr_flow/scripts/run_vtr_task.pl <task_name>

See also:
run_vtr_task for the detailed command line options of run_vtr_task.pl.
See also:

Tasks for more information on creating, modifying and running tasks.

2.4.3 Extracting Information & Statistics

VTR can also extract useful information and statistics from executions of the flow such as area, speed tool execution
time etc.

For single benchmarks parse_vtr_flow extrastics statistics from a single execution of the flow.

For a Task, parse_vtr_task can be used to parse and assemble statistics for the entire task (i.e. multiple circuits and
architectures).

For regression testing purposes these results can also be verified against a set of golden reference results. See
parse_vtr_task for details.

2.5 Benchmarks
There are several sets of benchmark designs which can be used with VTR.

2.5.1 VTR Benchmarks

The VTR benchmarks [RLY+12][LAK+14] are a set of medium-sized benchmarks included with VTR. They are fully
compatible with the full VTR flow. They are suitable for FPGA architecture research and medium-scale CAD research.

2.5. Benchmarks 25

Verilog-to-Routing Documentation, Release 8.1.0-dev

Table 2.1: The VTR 7.0 Benchmarks.

Benchmark Domain

bgm Finance
blob_merge Image Processing
boundtop Ray Tracing
ch_intrinsics Memory Init
diffeql Math

diffeq2 Math

LUSPEEng Math
LU32PEEng Math

mcml Medical Physics
mkDelayWorker32B | Packet Processing
mkPktMerge Packet Processing
mkSMAdapter4B Packet Processing
or1200 Soft Processor
raygentop Ray Tracing

sha Cryptography
stereovision0 Computer Vision
stereovisionl Computer Vision
stereovision2 Computer Vision
stereovision3 Computer Vision

The VTR benchmarks are provided as Verilog under:

SVTR_ROOT/vtr_flow/benchmarks/verilog

This provides full flexibility to modify and change how the designs are implemented (including the creation of new
netlist primitives).

The VTR benchmarks are also included as pre-synthesized BLIF files under:

SVTR_ROOT/vtr_flow/benchmarks/vtr_benchmarks_blif

2.5.2 Titan Benchmarks

The Titan benchmarks [MWL+13][MWL+15] are a set of large modern FPGA benchmarks. The pre-synthesized
versions of these benchmarks are compatible with recent versions of VPR.

The Titan benchmarks are suitable for large-scale FPGA CAD research, and FPGA architecture research which does
not require synthesizing new netlist primitives.

Note: The Titan benchmarks are not included with the VTR release (due to their size). However they can be
downloaded and extracted by running make get_titan_benchmarks from the root of the VIR tree. They can
also be downloaded manually.

See also:

Running the Titan Benchmarks

26 Chapter 2. VTR

http://www.eecg.utoronto.ca/~kmurray/titan/

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.5.3 MCNC20 Benchmarks

The MCNC benchmarks [Yan91] are a set of small and old (circa 1991) benchmarks. They consist primarily of logic
(i.e. LUTs) with few registers and no hard blocks.

Warning: The MCNC20 benchmarks are not recommended for modern FPGA CAD and architecture research.
Their small size and design style (e.g. few registers, no hard blocks) make them unrepresentative of modern FPGA
usage. This can lead to misleading CAD and/or architecture conclusions.

The MCNC20 benchmarks included with VIR are available as .b1l1if files under:

’$VTR_ROOT/vtr_flow/benchmarks/blif/

The versions used in the VPR 4.3 release, which were mapped to K -input look-up tables using FlowMap [CD94], are
available under:

’$VTR_ROOT/vtr_flow/benchmarks/blif/<#>

where K = <#>.

Table 2.2: The MCNC20 benchmarks.

Benchmark | Approximate Number of Netlist Primitives
alu4 934
apex2 1116
apex4 916
bigkey 1561
clma 3754
des 1199
diffeq 1410
dsip 1559
elliptic 3535
ex1010 2669
ex5p 824
frisc 3201
misex3 842
pdc 2879
$298 732
s38417 4888
s38584.1 4726
seq 1041
spla 2278
tseng 1583

2.5. Benchmarks 27

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.6 Power Estimation

VTR provides transistor-level dynamic and static power estimates for a given architecture and circuit.

Fig. 2.2 illustrates how power estimation is performed in the VTR flow. The actual power estimation is performed
within the VPR executable; however, additional files must be provided. In addition to the circuit and architecture files,
power estimation requires files detailing the signal activities and technology properties.

Running VTR with Power Estimation details how to run power estimation for VIR. Supporting Tools provides details
on the supporting tools that are used to generate the signal activities and technology properties files. Architecture Mod-
elling provides details about how the tool models architectures, including different modelling methods and options.
Other Architecture Options & Techniques provides more advanced configuration options.

2.6.1 Running VTR with Power Estimation

VTR Flow

The easiest way to run the VTR flow is to use the run_vtr_flow script.
In order to perform power estimation, you must add the following options:
* run_vtr._flow.pl —-power
e run_vtr_flow.pl —-cmos_tech<cmos_tech_properties_file>

The CMOS technology properties file is an XML file that contains relevant process-dependent information needed for
power estimation. XML files for 22nm, 45nm, and 130nm PTM models can be found here:

SVTR_ROOT/vtrflow/tech/x

See Technology Properties for information on how to generate an XML file for your own SPICE technology model.

VPR

Power estimation can also be run directly from VPR with the following (all required) options:
* vpr —-power: Enables power estimation.
e vpr ——activity_file<activities.act>: The activity file, produce by ACE 2.0, or another tool.
e vpr ——tech_properties <tech_properties.xml>: The technology properties file.

Power estimation requires an activity file, which can be generated as described in ACE 2.0 Activity Estimation.

2.6.2 Supporting Tools

Technology Properties

Power estimation requires information detailing the properties of the CMOS technology. This information, which
includes transistor capacitances, leakage currents, etc. is included in an . xm1 file, and provided as a parameter to VPR.
This XML file is generated using a script which automatically runs HSPICE, performs multiple circuit simulations,
and extract the necessary values.

Some of these technology XML files are included with the release, and are located here:

28 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Architecture
Description File

——

Packing (*.net)
Placement (*.place)
Routing (*.route)
Power (*.power)

Fig. 2.2: Power Estimation in the VTR Flow

Verilog SPICE CMOS
HDL Technology File
¥ W
Technology
ODIN I] Properties
J Generation
One-time onl
BLIF : L
W
[ABC]
e ™
h 4 ACE 2.0
BLIF > (Activity
Estimation)
\
W \
Activities le Ch"m‘?g"‘f
(*.act) Properties
L ' [*_xml!
VPR 6.0
with
Power Estimation
W

2.6. Power Estimation

29

Verilog-to-Routing Documentation, Release 8.1.0-dev

SVTR_ROOT/vtr_flow/tech/x

If the user wishes to use a different CMOS technology file, they must run the following script:

Note: HSPICE must be available on the users path

SVTR_ROOT/vtr_flow/scripts/generate_cmos_tech_data.pl <tech_file> <tech_size> <vdd>
—<temp>

where:
* <tech_file>: Is a SPICE technology file, containing a pmos and nmos models.
e <tech_size>: The technology size, in meters.
Example:
A 90nm technology would have the value 90e-9.
e <vdd>: Supply voltage in Volts.

e <temp>: Operating temperature, in Celcius.

ACE 2.0 Activity Estimation

Power estimation requires activity information for the entire netlist. This ativity information consists of two values:
1. The Signal Probability, P, is the long-term probability that a signal is logic-high.
Example:
A clock signal with a 50% duty cycle will have P; (clk) = 0.5.

2. The Transition Density (or switching activity), Ag, is the average number of times the signal will switch during
each clock cycle.

Example:
A clock has Ag(clk) = 2.

The default tool used to perform activity estimation in VTR is ACE 2.0 [LWO06]. This tool was originally designed
to work with the (now obsolete) Berkeley SIS tool ACE 2.0 was modifed to use ABC, and is included in the VTR
package here:

’ SVTR_ROOT/ace?

The tool can be run using the following command-line arguments:

’$VTR_ROOT/ace2/ace -b <abc.blif> -c <clock_name> -o <activities.act> -n <new.blif>

where
* <abc.blif>: Is the input BLIF file produced by ABC.
e <clock_name>: Is the name of the clock in the input BLIF file
* <activities.act>: Is the activity file to be created.

e <new.blif>: The new BLIF file.

30 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

This will be functionally identical in function to the ABC blif; however, since ABC does not maintain
internal node names, a new BLIF must be produced with node names that match the activity file.

User’s may with to use their own activity estimation tool. The produced activity file must contain one line for each net
in the BLIF file, in the following format:

<net name> <signal probability> <transistion density>

2.6.3 Architecture Modelling

The following section describes the architectural assumptions made by the power model, and the related parameters
in the architecture file.

Complex Blocks

The VTR architecture description language supports a hierarchichal description of blocks. In the architecture file,
each block is described as a pb_t ype, which may includes one or more children of type pb_t ype, and interconnect
structures to connect them.

The power estimation algorithm traverses this hierarchy recursively, and performs power estimation for each
pb_type. The power model supports multiple power estimation methods, and the user specifies the desired method
in the architecture file:

<pb_type>
<power method="<estimation-method>"/>
</pb_type>

The following is a list of valid estimation methods. Detailed descriptions of each type are provided in the following
sections. The methods are listed in order from most accurate to least accurate.

1. specify-size: Detailed transistor level modelleling.
The user supplies all buffer sizes and wire-lengths. Any not provided by the user are ignored.
2. auto-size: Detailed transistor level modelleling.

The user can supply buffer sizes and wire-lengths; however, they will be automatically inserted when not pro-
vided.

3. pin-toggle: Higher-level modelling.
The user specifies energy per toggle of the pins. Static power provided as an absolute.
4. C-internal: Higher-level modelling.
The user supplies the internal capacitance of the block. Static power provided as an absolute.
5. absolute: Highest-level modelling.
The user supplies both dynamic and static power as absolutes.
Other methods of estimation:
1. ignore: The power of the pb_type is ignored, including any children.
2. sum-of-children: Power of pb_type is solely the sum of all children pb_types.

Interconnect between the pb_t ype and its children is ignored.

2.6. Power Estimation 31

Verilog-to-Routing Documentation, Release 8.1.0-dev

Note: If no estimation method is provided, it is inherited from the parent pb_type.

Note: If the top-level pb_t ype has no estimation method, auto-size is assumed.

specify-size
This estimation method provides a detailed transistor level modelling of CLBs, and will provide the most accurate
power estimations. For each pb_type, power estimation accounts for the following components (see Fig. 2.3).

¢ Interconnect multiplexers

* Buffers and wire capacitances

¢ Child pb_types

pb type: clb

pb type: ble

YVYYVY

pb type: ble

Fig. 2.3: Sample Block

Multiplexers: Interconnect multiplexers are modelled as 2-level pass-transistor multiplexers, comprised of minimum-
size NMOS transistors. Their size is determined automatically from the <interconnect /> structures in the archi-
tecture description file.

32 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Buffers and Wires: Buffers and wire capacitances are not defined in the architecture file, and must be explicitly added
by the user. They are assigned on a per port basis using the following construct:

<pb_type>
<input name="my_input" num_pins="1">
<power ...options.../>
</input>
</pb_type>

The wire and buffer attributes can be set using the following options. If no options are set, it is assumed that the wire
capacitance is zero, and there are no buffers present. Keep in mind that the port construct allows for multiple pins per
port. These attributes will be applied to each pin in the port. If necessary, the user can seperate a port into multiple
ports with different wire/buffer properties.

* wire_capacitance=1.0e-15: The absolute capacitance of the wire, in Farads.

* wire_length=1.0e-7: The absolute length of the wire, in meters.
The local interconnect capacitance option must be specified, as described in Local Interconnect Ca-
pacitance.

* wire_length=auto: The wirelength is automatically sized. See Local Wire Auto-Sizing.

e buffer_size=2.0: The size of the buffer at this pin. See for more Buffer Sizing information.

e buffer_size=auto: The size of the buffer is automatically sized, assuming it drives the above wire capac-
itance and a single multiplexer. See Buffer Sizing for more information.

Primitives: For all child pb_types, the algorithm performs a recursive call. Eventually pb_types will be reached
that have no children. These are primitives, such as flip-flops, LUTs, or other hard-blocks. The power model includes
functions to perform transistor-level power estimation for flip-flops and LUTs. If the user wishes to use a design with
other primitive types (memories, multipliers, etc), they must provide an equivalent function. If the user makes such a
function, the power_calc_primitive function should be modified to call it. Alternatively, these blocks can be
configured to use higher-level power estimation methods.

auto-size

This estimation method also performs detailed transistor-level modelling. It is almost identical to the specify-size
method described above. The only difference is that the local wire capacitance and buffers are automatically inserted
for all pins, when necessary. This is equivalent to using the specify-size method withthe wire_length=auto
and buffer_ size=auto options for every port.

Note: This is the default power estimation method.

Although not as accurate as user-provided buffer and wire sizes, it is capable of automatically capturing trends in
power dissipation as architectures are modified.

2.6. Power Estimation 33

Verilog-to-Routing Documentation, Release 8.1.0-dev

pin-toggle

This method allows users to specify the dynamic power of a block in terms of the energy per toggle (in Joules) of each
input, output or clock pin for the pb_t ype. The static power is provided as an absolute (in Watts). This is done using
the following construct:

<pb_type>

<power method="pin-toggle">
<port name="A" energy_per_toggle="1.0e-12"/>
<port name="B[3:2]" energy_per_toggle="1.0e-12"/>
<port name="C" energy_per_toggle="1.0e-12" scaled_by_static_porb="enl"/>
<port name="D" energy_per_toggle="1.0e-12" scaled_by_static_porb_n="en2"/>
<static_power power_per_instance="1.0e-6"/>

</power>

</pb_type>

Keep in mind that the port construct allows for multiple pins per port. Unless an subset index is provided, the energy
per toggle will be applied to each pin in the port. The energy per toggle can be scaled by another signal using the
scaled_by_static_prob. For example, you could scale the energy of a memory block by the read enable
pin. If the read enable were high 80% of the time, then the energy would be scaled by the signal_probability, 0.8.
Alternatively scaled_by_static_prob_n can be used for active low signals, and the energy will be scaled by
(1 — signal_probability).

This method does not perform any transistor-level estimations; the entire power estimation is performed using the
above values. It is assumed that the power usage specified here includes power of all child pb_types. No further
recursive power estimation will be performed.

C-internal
This method allows the users to specify the dynamic power of a block in terms of the internal capacitance of the block.

The activity will be averaged across all of the input pins, and will be supplied with the internal capacitance to the
standard equation:

1
den = 5@0‘/2

Again, the static power is provided as an absolute (in Watts). This is done using the following construct:

<pb_type>
<power method="c-internal">
<dynamic_power C_internal="1.0e-16"/>
<static_power power_per_instance="1.0e-16"/>
</power>
</pb_type>

It is assumed that the power usage specified here includes power of all child pb_types. No further recursive power
estimation will be performed.

34 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

absolute

This method is the most basic power estimation method, and allows users to specify both the dynamic and static power
of a block as absolute values (in Watts). This is done using the following construct:

<pb_type>
<power method="absolute">
<dynamic_power power_per_instance="1.0e-16"/>
<static_power power_per_instance="1.0e-16"/>
</power>
</pb_type>

It is assumed that the power usage specified here includes power of all child pb_types. No further recursive power
estimation will be performed.

2.6.4 Global Routing

Global routing consists of switch boxes and input connection boxes.

Switch Boxes

Switch boxes are modelled as the following components (Fig. 2.4):
1. Multiplexer
2. Buffer

3. Wire capacitance

To Connection
Box

Fig. 2.4: Switch Box
Multiplexer: The multiplexer is modelled as 2-level pass-transistor multiplexer, comprised of minimum-size NMOS
transistors. The number of inputs to the multiplexer is automatically determined.

Buffer: The buffer is a multistage CMOS buffer. The buffer size is determined based upon output capacitance provided
in the architecture file:

2.6. Power Estimation 35

Verilog-to-Routing Documentation, Release 8.1.0-dev

<switchlist>
<switch type="mux" ... C_out="1.0e-16"/>
</switchlist>

The user may override this method by providing the buffer size as shown below:

<switchlist>
<switch type="mux" ... power_buf_size="16"/>
</switchlist>

The size is the drive strength of the buffer, relative to a minimum-sized inverter.

Input Connection Boxes

Input connection boxes are modelled as the following components (Fig. 2.5):

* One buffer per routing track, sized to drive the load of all input multiplexers to which the buffer is connected
(For buffer sizing see Buffer Sizing).

* One multiplexer per block input pin, sized according to the number of routing tracks that connect to the pin.

Rauting

BulTars Uk ipde s
Tracks

CLE

Fig. 2.5: Connection Box

Clock Network

The clock network modelled is a four quadrant spine and rib design, as illustrated in Fig. 2.6. At this time, the power
model only supports a single clock. The model assumes that the entire spine and rib clock network will contain buffers
separated in distance by the length of a grid tile. The buffer sizes and wire capacitances are specified in the architecture
file using the following construct:

<clocks>
<clock ... clock_options ... />
</clocks>

The following clock options are supported:
e C_wire=1le-16: The absolute capacitance, in fards, of the wire between each clock buffer.

* C_wire_per_m=1e-12: The wire capacitance, in fards per m.

36 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

The capacitance is calculated using an automatically determined wirelength, based on the area of a
tile in the FPGA.

e buffer_size=2.0: The size of each clock buffer.

This can be replaced with the auto keyword. See Buffer Sizing for more information on buffer
sizing.

Fig. 2.6: The clock network. Squares represent CLBs, and the wires represent the clock network.

2.6.5 Other Architecture Options & Techniques
Local Wire Auto-Sizing

Due to the significant user effort required to provide local buffer and wire sizes, we developed an algorithm to esti-
mate them automatically. This algorithm recursively calculates the area of all entities within a CLB, which consists
of the area of primitives and the area of local interconnect multiplexers. If an architecture uses new primitives in
CLBs, it should include a function that returns the transistor count. This function should be called from within
power_count_transistors_primitive ().

In order to determine the wire length that connects a parent entity to its children, the following assumptions are made:

2.6. Power Estimation 37

Verilog-to-Routing Documentation, Release 8.1.0-dev

e Assumption 1: All components (CLB entities, multiplexers, crossbars) are assumed to be contained in a square-
shaped area.

* Assumption 2: All wires connecting a parent entity to its child pass through the interconnect square, which is
the sum area of all interconnect multiplexers belonging to the parent entity.

Fig. 2.7 provides an illustration of a parent entity connected to its child entities, containing one of each interconnect
type (direct, many-to-1, and complete). In this figure, the square on the left represents the area used by the transistors
of the interconnect multiplexers. It is assumed that all connections from parent to child will pass through this area.
Real wire lengths could me more or less than this estimate; some pins in the parent may be directly adjacent to child
entities, or they may have to traverse a distance greater than just the interconnect area. Unfortuantely, a more rigorous
estimation would require some information about the transistor layout.

Parent Entity

LN A

-

I-inh:'rl,:

N

A

% y Child Entities
"'PL:rl:ls:-hur

Area of all interconnect
multiplexers

Fig. 2.7: Local interconnect wirelength.

Table 2.3: Local interconnect wirelength and capacitance. Cj,,, is the
input capacitance of a minimum-sized inverter.

Connection from Entity Pin to: | Estimated Wirelength | Transistor Capacitance
Direct (Input or Output) 0.5 Linterce 0

Many-to-1 (Input or Output) 0.5 Lintere Cinv

Complete m:n (Input) 0.5 Lintere + Lerossbar | M- CINV

Complete m:n (Output) 0.5 Lintere Cinv

Table 2.3 details how local wire lengths are determined as a function of entity and interconnect areas. It is assumed
that each wire connecting a pin of a pb_type to an interconnect structure is of length 0.5 - L;pterc. In reality, this
length depends on the actual transistor layout, and may be much larger or much smaller than the estimated value. If
desired, the user can override the 0.5 constant in the architecture file:

<architecture>
<power>
<local_interconnect factor="0.5"/>
</power>
</architecture>

38 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Buffer Sizing

In the power estimator, a buffer size refers to the size of the final stage of multi-stage buffer (if small, only a single

stage is used). The specified size is the % of the NMOS transistor. The PMOS transistor will automatically be sized

larger. Generally, buffers are sized depending on the load capacitance, using the following equation:

% C’Load
2. fre Cinv

In this equation, C v is the input capacitance of a minimum-sized inverter, and fr,z is the logical effort factor. The
logical effort factor is the gain between stages of the multi-stage buffer, which by default is 4 (minimal delay). The
term (2 - fr) is used so that the ratio of the final stage to the driven capacitance is smaller. This produces a much
lower-area, lower-power buffer that is still close to the optimal delay, more representative of common design practises.
The logical effort factor can be modified in the architecture file:

Buffer Size =

<architecture>
<power>
<buffers logical_effor_factor="4"/>
</power>
</architecture>

Local Interconnect Capacitance

If using the auto-size or wire-length options (Architecture Modelling), the local interconnect capacitance
must be specified. This is specified in the units of Farads/meter.

<architecture>
<power>
<local_interconnect C _wire="2.5e-15"/>
</power>
</architecture>

2.7 Tasks

Tasks provide a framework for running the VTR flow on multiple benchmarks, architectures and with multiple CAD
tool parameters.

A task specifies a set of benchmark circuits, architectures and CAD tool parameters to be used. By default, tasks
execute the run_vtr_flow script for every circuit/architecture/CAD parameter combination.

2.7.1 Example Tasks

* basic_flow: Runs the VTR flow mapping a simple Verilog circuit to an FPGA architecture.
* timing: Runs the flagship VTR benchmarks on a comprehensive, realistic architecture file.
* timing_chain: Same as t iming but with carry chains.

* regression_mcnc: Runs VIR on the historical MCNC benchmarks on a legacy architecture file. (Note:
This is only useful for comparing to the past, it is not realistic in the modern world)

* regression_titan/titan_small: Runs a small subset of the Titan benchmarks targetting a simplified
Altera Stratix IV (commercial FPGA) architecture capture

* regression_fpu_hard_block_arch: Custom hard FPU logic block architecture

2.7. Tasks 39

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.7.2 Directory Layout

All of VTR’s included tasks are located here:

’ SVTR_ROOT/vtr_flow/tasks

If users wishes to create their own task, they must do so in this location.

All tasks must contain a configuration file located here:

’ SVTR_ROOT/vtr_flow/tasks/<task_name>/config/config.txt

Fig. 2.8 illustrates the directory layout for a VIR task. Every time the task is run a new run<#> directory is created
to store the output files, where <#> is the smallest integer to make the run directory name unique.

The symbolic link 1atest will point to the most recent run<#> directory.

<task_name>

[Conﬁgj [runOOlj [runOOQ] [run003j<—[latestj

[conﬁg.txt] [<arch1>] [<arch2>] []

[< circuitl >j [< circuit2 >j m

[<para,msl>] [<pa,ram52>] []

odin.out odin.out

abc.out abc.out
vpr.out vpr.out

Fig. 2.8: Task directory layout.

2.7.3 Creating a New Task

1. Create the folder SVTR_ROOT/vtr_flow/tasks/<task_name>
2. Create the folder SVTR_ROOT/vtr_flow/tasks/<task_name>/config

3. Create and configure the file SVTR_ROOT/vtr_flow/tasks/<task_name>/config/config.txt

40 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.7.4 Task Configuration File

The task configuration file contains key/value pairs separated by the = character. Comment line are indicted using the
symbol.

Example configuration file:

Path to directory of circuits to use
circuits_dir=benchmarks/verilog

Path to directory of architectures to use
archs_dir=arch/timing

Add circuits to list to sweep
circuit_list_add=ch_intrinsics.v
circuit_list_add=diffeql.v

Add architectures to list to sweep
arch_list_add=k6_N10_memSizel6384_memData64_stratix4_based_timing_sparse.xml

Parse info and how to parse
parse_file=vpr_standard.txt

Note: run_vtr_task will invoke the script (default run_vtr_flow) for the cartesian product of circuits, architectures and
script parameters specified in the config file.

2.7.5 Required Fields

e circuit_dir: Directory path of the benchmark circuits.
Absolute path or relative to SVTR_ROOT/vtr_flow/.
 arch_dir: Directory path of the architecture XML files.
Absolute path or relative to SVTR_ROOT/vtr_flow/.
¢ circuit_list_add: Name of a benchmark circuit file.
Use multiple lines to add multiple circuits.
« arch_list_add: Name of an architecture XML file.
Use multiple lines to add multiple architectures.
* parse_file: Parse Configuration file used for parsing and extracting the statistics.

Absolute path or relative to SVTR_ROOT/vtr_flow/parse/parse_config.

2.7. Tasks 41

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.7.6 Optional Fields

* script_path: Script to run for each architecture/circuit combination.

Absolute path or relative to SVTR_ROOT/vtr_flow/scripts/ or SVIR_ROOT/vtr_flow/
tasks/<task_name>/config/)

Default: run_vtr_flow

Users can set this option to use their own script instead of the default. The circuit path will be
provided as the first argument, and architecture path as the second argument to the user script.

e script_params_common: Common parameters to be passed to all script invocations.
This can be used, for example, to run partial VTR flows.
Default: none

e script_params: Alias for script_params_common

* script_params_list_add: Adds a set of command-line arguments

Multiple script_params_list_add can be provided which are addded to the cartesian product of con-
figurations to be evaluated.

¢ sdc_dir: Directory path to benchmark SDC files.
Absolute path or relative to SVTR_ROOT/vtr_flow/.
If provided, each benchmark will look for a similarly named SDC file.

For instance with circuit_list_add=my_circuit.v or
circuit_list_add=my_circuit.blif, the flow would look for an SDC file named
my_circuit.sdc within the specified sdc_dir.

¢ pass_requirements_file: Pass Requirements file.

Absolute path or relative to $VIR_ROOT/vtr_flow/parse/pass_requirements/ or
SVTR_ROOT/vtr_flow/tasks/<task_name>/config/

Default: none

2.8 run_vtr_flow

This script runs the VIR flow for a single benchmark circuit and architecture file.

The script is located at:

SVTR_ROOT/vtr_flow/scripts/run_vtr_flow.pl

2.8.1 Basic Usage

Ataminimum run_vtr_flow.pl requires two command-line arguments:

run_vtr_flow.pl <circuit_file> <architecture_file>

where:
e <circuit_file> is the circuit to be processed

e <architecture_file> is the target FPGA architecture

42 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Note: The script will create a . /temp directory, unless otherwise specified with the —temp_ dir option. The
circuit file and architecture file will be copied to the temporary directory. All stages of the flow will be run within this
directory. Several intermediate files will be generated and deleted upon completion. Users should ensure that no
important files are kept in this directory as they may be deleted.

2.8.2 Output

The standard out of the script will produce a single line with the format:

<architecture>/<circuit_name>...<status>

If execution completed successfully the status will be ‘OK’. Otherwise, the status will indicate which stage of execution
failed.

The script will also produce an output files (*.out) for each stage, containing the standout output of the executable(s).

2.8.3 Advanced Usage

Additional optional command arguments can also be passed to run_vtr_flow.pl:

run_vtr_flow.pl <circuit_file> <architecture_file> [<options>] [<vpr_options>]

where:
* <options> are additional arguments passed to run_vtr_flow.pl (described below),

e <vpr_options> are any arguments not recognized by run_vtr_flow.pl. These will be forwarded to
VPR.

For example:

run_vtr_flow.pl my_circuit.v my_arch.xml -track_memory_usage --pack —-place

will run the VTR flow to map the circuit my_circuit.v onto the architecture my_arch.xml; the arguments
--pack and ——-place will be passed to VPR (since they are unrecognized arguments to run_vtr_flow.pl).
They will cause VPR to perform only packing and placement.

2.8.4 Detailed Command-line Options

Note: Any options not recognized by this script is forwarded to VPR.

-starting_stage <stage>
Start the VTR flow at the specified stage.

Accepted values:
* odin
* abc
* scripts

* vpr

2.8. run_vtr_flow 43

Verilog-to-Routing Documentation, Release 8.1.0-dev

Default: odin

-ending_stage <stage>
End the VTR flow at the specified stage.

Accepted values:
¢ odin
* abc
* scripts
* vpr
Default: vpr

—-power
Enables power estimation.

See Power Estimation

—-cmos_tech <file>
CMOS technology XML file.

See Technology Properties

—delete_intermediate files
Delete intermediate files (i.e. .dot, .xml, . rc, etc)

—delete_result_files
Delete result files (i.e. VPR’s .net, .place, . route outputs)

—track_memory usage
Record peak memory usage and additional statistics for each stage.

Note: Requires /usr/bin/time -v command. Some operating systems do not report peak memory.

Default: off

-limit_memory_ usage
Kill benchmark if it is taking up too much memory to avoid slow disk swaps.

Note: Requires ulimit -Sv command.

Default: off

—-timeout <float>
Maximum amount of time to spend on a single stage of a task in seconds.

Default: 14 days

-temp_dir <path>
Temporary directory used for execution and intermediate files. The script will automatically create this directory
if necessary.

Default: . /temp

-valgrind
Run the flow with valgrind while using the following valgrind options:

¢ —]eak-check=full

44 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

e —errors-for-leak-kinds=none
e —error-exitcode=1
* —track-origins=yes

-min_hard mult_size <int>
Tells ODIN II the minimum multiplier size that should be implemented using hard multiplier (if available).
Smaller multipliers will be implemented using soft logic.

Default: 3

-min_hard adder size <int>
Tells ODIN II the minimum adder size that should be implemented using hard adders (if available). Smaller
adders will be implemented using soft logic.

Default: 1

—adder_cin_global
Tells ODIN II to connect the first cin in an adder/subtractor chain to a global gnd/vdd net. Instead of creating a
dummy adder to generate the input signal of the first cin port of the chain.

2.9 run_vtr_task

This script is used to execute one or more tasks (i.e. collections of benchmarks and architectures).
See also:

See Tasks for creation and configuration of tasks.

This script runs the VIR flow for a single benchmark circuit and architecture file.

The script is located at:

SVTR_ROOT/vtr_flow/scripts/run_vtr_task.pl

2.9.1 Basic Usage

Typical usage is:

run_vtr_task.pl <task_namel> <task_name2>

Note: At least one task must be specified, either directly as a parameter or via the —1 options.

2.9.2 Output

Each task will execute the script specified in the configuration file for every benchmark/circuit/option combination.
The standard output of the underlying script will be forwarded to the output of this script.

If golden results exist (see parse_vtr_task), they will be inspected for runtime and memory usage.

2.9. run_vtr_task 45

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.9.3 Detailed Command-line Options

-s <script_param>

Treat the remaining command line options as parameters to forward to the underlying script (e.g. run_vtr_flow).
-j <N>

Perform parallel execution using N threads.

Note: Only effective for ~-system local

Warning: Large benchmarks will use very large amounts of memory (several to 10s of gigabytes). Because
of this, parallel execution often saturates the physical memory, requiring the use of swap memory, which

significantly slows execution. Be sure you have allocated a sufficiently large swap memory or errors may
result.

-1 <task_list_file>
A file containing a list of tasks to execute.

Each task name should be on a separate line, e.g.:

<task_namel>
<task_name2>
<task_name3>

—-system {local | scripts}
Controls how the actions (e.g. invocations of run_vtr_flow) are called.

Default: 1ocal

* local: Runs the flow invocations on the local machine (potentially in parallel with the —j option).

Example:

#From SVTR_ROOT/vtr_flow/tasks

$../scripts/run_vtr_task.pl regression_tests/vtr_reg_basic/basic_
—timing

regression_tests/vtr_reg_basic/basic_timing: k6_N10_mem32K_40nm.xml/ch_
—intrinsics.v/common OK (took 2.24 seconds)
regression_tests/vtr_reg basic/basic_timing: k6_N10_mem32K_40nm.xml/
—diffeql.v/common OK (took 10.94 seconds)

e scripts: Prints out all the generated script files (instead of calling them to run all the flow invocations).

Example:

#From SVTR_ROOT/vtr_flow/tasks

$../scripts/run_vtr_task.pl regression_tests/vtr_reg_basic/basic_
—~timing —-system scripts
/project/trees/vtr/vtr_flow/tasks/regression_tests/vtr_reg_basic/basic_
—timing/run001/k6_N10_mem32K_40nm.xml/ch_intrinsics.v/common/vtr_flow.
—sh
/project/trees/vtr/vtr_flow/tasks/regression_tests/vtr_reg_basic/basic_
—timing/run001/k6_N10_mem32K_40nm.xml/diffeql.v/common/vtr_flow.sh

46 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Each generated script file (vt r_f1ow. sh) corresponds to a particular flow invocation generated
by the task, and is located within its own directory.

This list of scripts can be used to run flow invocations on different computing infrastructures (e.g.
a compute cluster).

Using the output of -system scripts to run a task

An example of using the output would be:

#From SVTR_ROOT/vtr_flow/tasks

$../scripts/run_vtr_task.pl regression_tests/vtr_reg basic/basic_
—timing -system scripts | parallel -j4 'cd $(dirname {}) && {}'
regression_tests/vtr_reg_basic/basic_timing: k6_N10_mem32K_40nm.xml/ch_

—intrinsics.v/common OK (took 2.11 seconds)
regression_tests/vtr_reg _basic/basic_timing: k6_N10_mem32K_40nm.xml/
—diffegl.v/common OK (took 10.94 seconds)

where {} is a special variable interpretted by the parallel command to represent the in-
put line (i.e. a script, see parallel’s documentation for details). This will run the scripts
generated by run_vtr_task.pl in parallel (up to 4 at-a-time due to —j4). Each script is invoked
in the script’s containing directory (cd $ (dirname {})), which mimics the behaviour of
-system local -3j4.

Note: While this example shows how the flow invocations could be run locally, similar tech-
niques can be used to submit jobs to other compute infrastructures (e.g. a compute cluster)

Determining Resource Requirements

Often, when running in a cluster computing enviroment, it is useful to know what compute re-
sources are required for each flow invocation.

Each generated vt r__f1low. sh scripts contains the expected run-time and memory use of each
flow invocation (derived from golden reference results). These can be inspected to determine
compute requirements:

$ grep VTR_RUNTIME_ESTIMATE_SECONDS /project/trees/vtr/vtr_flow/tasks/
—regression_tests/vtr_reg_basic/basic_timing/run001/k6_N10_mem32K_
—40nm.xml/ch_intrinsics.v/common/vtr_flow.sh
VTR_RUNTIME_ESTIMATE_SECONDS=2.96

$ grep VTR_MEMORY_ESTIMATE_BYTES /project/trees/vtr/vtr_flow/tasks/
s regression_tests/vtr_reg_basic/basic_timing/run001/k6_N10_mem32K_
—40nm.xml/ch_intrinsics.v/common/vtr_flow.sh
VTR_MEMORY_ESTIMATE_BYTES=63422464

Note: If the resource estimates are unkown they will be set to 0

2.9. run_vtr_task 47

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.10 parse_vtr_flow

This script parses statistics generated by a single execution of the VTR flow.

Note: If the user is using the 7usks framework, parse_vtr_task should be used.

The script is located at:

SVTR_ROOT/vtr_flow/scripts/parse_vtr_flow.pl

2.10.1 Usage

Typical usage is:

parse_vtr_flow.pl <parse_path> <parse_config_file>

where:
e <parse_path> is the directory path that contains the files to be parsed (e.g. vpr.out, odin. out, etc).

* <parse_config_file> isthe path to the Parse Configuration file.

2.10.2 Output

The script will produce no standard output. A single file named parse_results.txt will be produced in the
<parse_path> folder. The file is tab delimited and contains two lines. The first line is a list of field names that
were searched for, and the second line contains the associated values.

2.11 parse_vtr_task

This script is used to parse the output of one or more 7asks. The values that will be parsed are specified using a Parse
Configuration file, which is specified in the task configuration.

The script will always parse the results of the latest execution of the task.

The script is located at:

SVTR_ROOT/vtr_flow/scripts/parse_vtr_task.pl

2.11.1 Usage

Typical usage is:

parse_vtr_task.pl <task_namel> <task_name2> ...

Note: At least one task must be specified, either directly as a parameter or through the —1 option.

48 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.11.2 Output

By default this script produces no standard output. A tab delimited file containing the parse results will be produced
for each task. The file will be located here:

’$VTR_ROOT/vtr_flow/tasks/<task_name>/run<#>/parse_results.txt

If the ~check_golden is used, the script will output one line for each task in the format:

’<task_name>...<status>

where <status> will be [Pass], [Fail],or [Error].

2.11.3 Detailed Command-line Options
-1 <task_list_file>
A file containing a list of tasks to parse. Each task name should be on a separate line.

—-create_golden
The results will be stored as golden results. If previous golden results exist they will be overwritten.

The golden results are located here:

SVTR_ROOT/vtr_flow/tasks/<task_name>/config/golden_results.txt

—check_golden
The results will be compared to the golden results using the Pass Requirements file specified in the task con-
figuration. A Pass or Fail will be output for each task (see below). In order to compare against the golden
results, they must already exist, and have the same architectures, circuits and parse fields, otherwise the script
will report Error.

If the golden results are missing, or need to be updated, use the —create_golden option.

2.12 Parse Configuration
A parse configuration file defines a set of values that will be searched for within the specified files.

2.12.1 Format

The configuration file contains one line for each value to be searched for. Each line contains a semicolon delimited
tuple in the following format:

<field_name>;<file_to_search_within>;<regex>;<default_value>

e <field_name>: The name of the value to be searched for.
This name is used when generating the output files of parse_vtr_task and parse_vtr_flow.
e <file_to_search_within>: The name of the file that will be searched (vpr.out, odin.out, etc.)
e <regex>: A perl regular expression used to find the desired value.
The regex must contain a single grouping () which will contain the desired value to be recorded.

e <default_value>: The default value for the given <field_name> if the <regex> does not match.

2.12. Parse Configuration 49

Verilog-to-Routing Documentation, Release 8.1.0-dev

If no <default_value> is specified the value -1 is used.

Or an include directive to import parsing patterns from a separate file:

$include "<filepath>"

e <filepath> is a file containing additional parse specifications which will be included in the current file.

Comments can be specified with #. Anything following a # is ignored.

2.12.2 Example File

The following is an example parse configuration file:

vpr_status;output.txt;vpr_status=(.x)
vpr_seconds;output.txt; vpr_seconds= (\d+)
width;vpr.out;Best routing used a channel width factor of (\d+)

pack_time;vpr.out;Packing took (.x) seconds
place_time;vpr.out;Placement took (.*) seconds
route_time;vpr.out;Routing took (.*) seconds

num_pre_packed_nets;vpr.out;Total Nets: (\d+)
num_pre_packed_blocks;vpr.out; Total Blocks: (\d+)
num_post_packed_nets;vpr.out;Netlist num_nets:\s* (\d+)
num_clb;vpr.out;Netlist clb blocks:\s* (\d+)
num_io;vpr.out;Netlist inputs pins:\sx* (\d+)
num_outputs;vpr.out;Netlist output pins:\s=* (\d+)
num_lut0;vpr.out; (\d+) LUTs of size 0

num_lutl;vpr.out; (\d+) LUTs of size 1
num_lut2;vpr.out; (\d+) LUTs of size 2
num_lut3;vpr.out; (\d+) LUTs of size 3
num_lutd;vpr.out; (\d+) LUTs of size 4
num_lut5;vpr.out; (\d+) LUTs of size 5

num_lut6;vpr.out; (\d+) LUTs of size 6
unabsorb_ff;vpr.out; (\d+) FFs in input netlist not absorbable
num_memories; vpr.out;Netlist memory blocks:\s* (\d+)
num_mult;vpr.out;Netlist mult_36 blocks:\sx* (\d+)
equiv;abc.out;Networks are (equivalent)

error;output.txt;error=(.x)
%$include "my_other_metrics.txt" #Include metrics from the file 'my_other_metrics.
—txt!

2.13 Pass Requirements

The parse_vtr_task scripts allow you to compare an executed task to a golden reference result. The comparison,
which is performed when using the parse_vtr task.pl -check_golden option, which reports either Pass
or Fail. The requirements that must be met to qualify as a Pass are specified in the pass requirements file.

50 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.13.1 Task Configuration

Tasks can be configured to use a specific pass requirements file using the pass_requirements_file keyword in the
Tasks configuration file.

2.13.2 File Location

All provided pass requirements files are located here:

SVTR_ROOT/vtr_flow/parse/pass_requirements

Users can also create their own pass requirement files.

2.13.3 File Format

Each line of the file indicates a single metric, data type and allowable values in the following format:

<metric>; <requirement>

¢ <metric>: The name of the metric.
e <requirement>: The metric’s pass requirement.
Valid requiremnt types are:
— Equal () : The metric value must exactly match the golden reference result.

— Range (<min_ratio>, <max_ratio>): The metric value (normalized to the golden re-
sult) must be between <min_ratio> and <max_ratio>.

— Rangelbs (<min_ratio>, <max_ratio>, <abs_threshold>): The metric value
(normalized to the golden result) must be between <min_ratio> and <max_ratio>, or
the metric’s absolute value must be below <abs_threshold>.

Or an include directive to import metrics from a separate file:

%include "<filepath>"

« <filepath>: a relative path to another pass requirements file, whose metric pass requirements will be added to
the current file.

In order for a Pass to be reported, all requirements must be met. For this reason, all of the specified metrics must be
included in the parse results (see Parse Configuration).

Comments can be specified with #. Anything following a # is ignored.

2.13.4 Example File

vpr_status; Equal () #Pass if precisely equal

vpr_seconds; RangeAbs (0.80,1.40,2) #Pass if within -20%, or +40%, or absolute
—value less than 2

num_pre_packed_nets;Range (0.90,1.10) #Pass if withing +/-10%

%include "routing _metrics.txt" #Import all pass requirements from the file

— 'routing_metrics.txt'

2.13. Pass Requirements 51

Verilog-to-Routing Documentation, Release 8.1.0-dev

52 Chapter 2. VTR

CHAPTER
THREE

FPGA ARCHITECTURE DESCRIPTION

VTR uses an XML-based architecture description language to describe the targeted FPGA architecture. This flexible
description langauge allows the user to describe a large number of hypothetical and commercial-like FPGA architec-
tures.

See the Architecture Modeling for an introduction to the architecture description langauge. For a detailed reference on
the supported options see the Architecture Reference.

3.1 Architecture Reference

This section provides a detailed reference for the FPGA Architecture description used by VTR. The Architecture
description uses XML as its representation format.

As a convention, curly brackets { } represents an option with each option separated by |. For example, a={1 | 2
| open} means field a can take a value of 1, 2, or open.

3.1.1 Top Level Tags
The first tag in all architecture files is the <architecture> tag. This tag contains all other tags in the architecture
file. The architecture tag contains the following tags:

* <models>

e <tiles>

s <layout>

* <device>

¢ <switchlist>

* <segmentlist>

* <directlist>

e <complexblocklist>

53

Verilog-to-Routing Documentation, Release 8.1.0-dev

3.1.2 Recognized BLIF Models (<models>)

The <models> tag contains <model name="string"> tags. Each <model> tag describes the BLIF . subckt
model names that are accepted by the FPGA architecture. The name of the model must match the corresponding name
of the BLIF model.

Note: Standard blif structures (.names, .latch, .input, .output) are accepted by default, so these models
should not be described in the <models> tag.

Each model tag must contain 2 tags: <input_ports> and <output_ports>. Each of these contains <port>
tags:

<port name="string" is_clock="{0 | 1} clock="string" combinational_sink_ ports="stringl str:
Required Attributes
* name — The port name.
Optional Attributes
* is_clock - Identifies if the port as a clock port.
See also:

The Primitive Timing Modelling Tutorial for usage of is_clock to model clock control
blocks such as clock generators, clock buffers/gates and clock muxes.

Default: 0

* clock - Indicates the port is sequential and controlled by the specified clock (which must
be another port on the model marked with is_clock=1). Default: port is treated as com-
binational (if unspecified)

* combinational_ sink ports — A space-separated list of output ports which are com-
binationally connected to the current input port. Default: No combinational connections (if
unspecified)

Defines the port for a model.

An example models section containing a combinational primitive adder and a sequential primitive
single_port_ram follows:

<models>
<model name="single_port_ram">
<input_ports>

<port name="we" clock="clk" />
<port name="addr" clock="clk" combinational_sink_ports="out"/>
<port name="data" clock="clk" combinational_sink_ports="out"/>
<port name="clk" is_clock="1"/>

</input_ports>

<output_ports>
<port name="out" clock="clk"/>

</output_ports>

</model>

<model name="adder">
<input_ports>
<port name="a" combinational_sink_ports="cout sumout"/>
<port name="b" combinational_sink_ports="cout sumout"/>
<port name="cin" combinational_sink_ports="cout sumout"/>

(continues on next page)

54 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

</input_ports>
<output_ports>
<port name="cout"/>
<port name="sumout"/>
</output_ports>
</model>
</models>

Note that for single_port_ram above, the ports we, addr, data, and out are sequential since they have a clock
specified. Additionally addr and data are shown to be combinationally connected to out; this corresponds to an
internal timing path between the addr and data input registers, and the out output registers.

For the adder the input ports a, b and cin are each combinationally connected to the output ports cout and
sumout (the adder is a purely combinational primitive).

See also:

For more examples of primitive timing modeling specifications see the Primitive Block Timing Modeling Tutorial

3.1.3 Global FPGA Information

<tiles>content</tiles>
Content inside this tag contains a group of <pb_type> tags that specify the types of functional blocks and
their properties.

<layout/>
Content inside this tag specifies device grid layout.

See also:
FPGA Grid Layout

<device>content</device>
Content inside this tag specifies device information.

See also:
FPGA Device Information

<switchlist>content</switchlist>
Content inside this tag contains a group of <switch> tags that specify the types of switches and their properties.

<segmentlist>content</segmentlist>
Content inside this tag contains a group of <segment> tags that specify the types of wire segments and their
properties.

<complexblocklist>content</complexblocklist>
Content inside this tag contains a group of <pb_type> tags that specify the types of functional blocks and
their properties.

3.1. Architecture Reference 55

Verilog-to-Routing Documentation, Release 8.1.0-dev

3.1.4 FPGA Grid Layout

The valid tags within the <layout> tag are:
<auto_layout aspect_ratio="float">
Optional Attributes
* aspect_ratio - The device grid’s target aspect ratio (width/height)
Default: 1.0

Defines a scalable device grid layout which can be automatically scaled to a desired size.

Note: At most one <auto_layout> can be specified.

<fixed_layout name="string" width="int" height="int">
Required Attributes
* name — The unique name identifying this device grid layout.
* width — The device grid width
* height — The device grid height

Defines a device grid layout with fixed dimensions.

Note: Multiple <fixed_layout> tags can be specified.

Each <auto_layout> or <fixed_layout> tag should contain a set of grid location tags.

Grid Location Priorities

Each grid location specification has an associated numeric priority. Larger priority location specifications override
those with lower priority.

Note: If a grid block is partially overlapped by another block with higher priority the entire lower priority block is
removed from the grid.

Empty Grid Locations

Empty grid locations can be specified using the special block type EMPTY.

Note: All grid locations default to EMPTY unless otherwise specified.

56 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Grid Location Expressions
Some grid location tags have attributes (e.g. startx) which take an expression as their argument. An expression can
be an integer constant, or simple mathematical formula evaluated when constructing the device grid.

Supported operators include: +, —, x, /, along with (and) to override the default evaluation order. Expressions may
contain numeric constants (e.g. 7) and the following special variables:

» W: The width of the device
¢ H: The height of the device
* w: The width of the current block type
* h: The height of the current block type

Warning: All expressions are evaluated as integers, so operations such as division may have their result truncated.

As an example consider the expression W/2 - w/2. For a device width of 10 and a block type of width 3, this would
be evaluatedas [| — [2] =[] — [3| =5-1=4.

Grid Location Tags

<fill type="string" priority="int"/>
Required Attributes
* type — The name of the top-level complex block type (i.e. <pb_type>) being specified.

* priority — The priority of this layout specification. Tags with higher priority override
those with lower priority.

Fills the device grid with the specified block type.

Example:

<!-— Fill the device with CLB blocks —-—>
<fill type="CLB" priority="1"/>

<perimeter type="string" priority="int"/>
Required Attributes
* type — The name of the top-level complex block type (i.e. <pb_type>) being specified.

* priority — The priority of this layout specification. Tags with higher priority override
those with lower priority.

Sets the perimeter of the device (i.e. edges) to the specified block type.

Note: The perimeter includes the corners

Example:

<!-- Create io blocks around the device perimeter -->
<perimeter type="io" priority="10"/>

<corners type="string" priority="int"/>

3.1. Architecture Reference 57

Verilog-to-Routing Documentation, Release 8.1.0-dev

=
EENNNNEEEN:
I 1) -
i o

I

Fig. 3.1: <fill> CLB example

Chapter 3. FPGA Architecture Description

58

Verilog-to-Routing Documentation, Release 8.1.0-dev

«1 [[[[B = E

-

> [[

Fig. 3.2: <perimeter> io example

3.1. Architecture Reference 59

Verilog-to-Routing Documentation, Release 8.1.0-dev

Required Attributes
* type — The name of the top-level complex block type (i.e. <pb_type>) being specified.

* priority — The priority of this layout specification. Tags with higher priority override
those with lower priority.

Sets the corners of the device to the specified block type.

Example:

<!-- Create PLL blocks at all corners —-——>
<corners type="PLL" priority="20"/>

-1 L]

o i L]

0 W-1

Fig. 3.3: <corners> PLL example

<single type="string" priority="int" x="expr" y="expr"/>
Required Attributes
* type — The name of the top-level complex block type (i.e. <pb_type>) being specified.

60 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

* priority — The priority of this layout specification. Tags with higher priority override
those with lower priority.

* x — The horizontal position of the block type instance.
» y — The vertical position of the block type instance.
Specifies a single instance of the block type at a single grid location.

Example:

<!-— Create a single instance of a PCIE block (width 3, height 5)
at location (1,1)-->
<single type="PCIE" x="1" y="1" priority="20"/>

H-1

Fig. 3.4: <single> PCIE example

<col type="string" priority="int" startx="expr" repeatx="expr" starty="expr" incry="expr"/:
Required Attributes
* type — The name of the top-level complex block type (i.e. <pb_type>) being specified.

3.1. Architecture Reference 61

Verilog-to-Routing Documentation, Release 8.1.0-dev

* priority — The priority of this layout specification. Tags with higher priority override
those with lower priority.

* startx — An expression specifying the horizontal starting position of the column.
Optional Attributes
* repeatx — An expression specifying the horizontal repeat factor of the column.
* starty — An expression specifying the vertical starting offset of the column.
Default: 0

* incry — An expression specifying the vertical increment between block instantiations
within the region.

Default: h
Creates a column of the specified block type at startx.

If repeatx is specified the column will be repeated wherever x = startx + k - repeatz, is satisfied for any
positive integer k.

A non-zero starty is typically used if a <perimeter> tag is specified to adjust the starting position of
blocks with height > 1.

Example:
<!-- Create a column of RAMs starting at column 2, and
repeating every 3 columns ——>

<col type="RAM" startx="2" repeatx="3" priority="3"/>

Example:

<! Create IO's around the device perimeter >
<perimeter type="io" priority=10"/>

<! Create a column of RAMs starting at column 2, and
repeating every 3 columns. Note that a vertical offset
of 1 is needed to avoid overlapping the IO0s——>

<col type="RAM" startx="2" repeatx="3" starty="1" priority="3"/>

<row type="string" priority="int" starty="expr" repeaty="expr" startx="expr"/>
Required Attributes
* type — The name of the top-level complex block type (i.e. <pb_type>) being specified.

* priority — The priority of this layout specification. Tags with higher priority override
those with lower priority.

* starty — An expression specifying the vertical starting position of the row.
Optional Attributes
* repeaty — An expression specifying the vertical repeat factor of the row.
* startx — An expression specifying the horizontal starting offset of the row.
Default: 0

* incry — An expression specifying the horizontal increment between block instantiations
within the region.

Default: w

62 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 3.5: <col> RAM example

3.1. Architecture Reference 63

Verilog-to-Routing Documentation, Release 8.1.0-dev

iz

> [[1 [

= [[[[

Fig. 3.6: <col> RAM and <perimeter> io example

64 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Creates a row of the specified block type at starty.

If repeaty is specified the column will be repeated wherever y = starty + k - repeaty, is satisfied for any
positive integer k.

A non-zero startx is typically used if a <perimeter> tag is specified to adjust the starting position of
blocks with width > 1.

Example:

<!-- Create a row of DSPs (width 1, height 3) at
row 1 and repeating every 7th row —-->
<row type="DSP" starty="1" repeaty="7" priority="3"/>

Fig. 3.7: <row> DSP example

<region type="string" priority="int" startx="expr" endx="expr repeatx="expr" incrx="expr" :
Required Attributes
* type — The name of the top-level complex block type (i.e. <pb_type>) being specified.

3.1. Architecture Reference 65

Verilog-to-Routing Documentation, Release 8.1.0-dev

* priority — The priority of this layout specification. Tags with higher priority override
those with lower priority.

Optional Attributes

* startx — An expression specifying the horizontal starting position of the region (inclu-
sive).

Default: 0

* endx — An expression specifying the horizontal ending position of the region (inclusive).
Default: w - 1

* repeatx — An expression specifying the horizontal repeat factor of the column.

* incrx — An expression specifying the horizontal increment between block instantiations
within the region.

Default: w

* starty — An expression specifying the vertical starting position of the region (inclusive).
Default: 0

* endy — An expression specifying the vertical ending position of the region (inclusive).
Default: 5 - 1

* repeaty — An expression specifying the vertical repeat factor of the column.

* incry — An expression specifying the horizontal increment between block instantiations
within the region.

Default: h

Fills the rectangular region defined by (startx, starty) and (endx, endy) with the specified block type.

Note: endx and endy are included in the region

If repeatx is specified the region will be repeated wherever x = startx + ki * repeatz, is satisified for any
positive integer k.

If repeaty is specified the region will be repeated wherever y = starty + ks * repeaty, is satisified for any
positive integer k.

Example:

<!-- Fill RAMs withing the rectangular region bounded by (1,1) and (5,4) —-—->
<region type="RAM" startx="1" endx="5" starty="1" endy="4" priority="4"/>

Example:

<!-- Create RAMs every 2nd column withing the rectangular region bounded

by (1,1) and (5,4) ——>
<region type="RAM" startx="1" endx="5" starty="1" endy="4" incrx="2" priority="4"/
>

Example:

66

Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

H-1

Fig. 3.8: <region> RAM example

3.1. Architecture Reference 67

Verilog-to-Routing Documentation, Release 8.1.0-dev

H-1

Fig. 3.9: <region> RAM increment example

68 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

<!-- Fill RAMs within a rectangular 2x4 region and repeat every 3 horizontal

and 5 vertical units ——>
<region type="RAM" startx="1" endx="2" starty="1" endy="4" repeatx="3" repeaty=">5
—" priority="4"/>

Fig. 3.10: <region> RAM repeat example
Example:
<!-- Create a 3x3 mesh of NoC routers (width 2, height 2) whose relative positions

will scale with the device dimensions ——>

<region type="NoC" startx="W/4 - w/2" starty="W/4 - w/2" incrx="W/4" incry="W/4"_
—priority="3"/>

3.1. Architecture Reference 69

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 3.11: <region> NoC mesh example

70 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Grid Layout Example

<layout>
<!-- Specifies an auto-scaling square FPGA floorplan —-->
<auto_layout aspect_ratio="1.0">
<!-- Create I/0s around the device perimeter —->
<perimeter type="io" priority=10"/>

<!-- Nothing in the corners —->
<corners type="EMPTY" priority="100"/>

<!-- Create a column of RAMs starting at column 2, and

Y

repeating every 3 columns. Note that a vertical offset (starty)

of 1 is needed to avoid overlapping the IOs——>

<col type="RAM" startx="2" repeatx="3" starty="1" priority="3"/>

<!-- Create a single PCIE block along the bottom, overriding

I/0 and RAM slots ——>
<single type="PCIE" x="3" y="0" priority="20"/>

<!-- Create an additional row of I/Os just above the PCIE,

which will not override RAMs —->
<row type="io" starty="5" priority="2"/>

<!-- Fill remaining with CLBs —-->
<fill type="CLB" priority="1"/>
</auto_layout>
</layout>

3.1.5 FPGA Device Information

The tags within the <device> tag are:
<sizing R_minW _nmos="float" R_minW_pmos="float"/>

Required Attributes

* R_minW_nmos — The resistance of minimum-width nmos transistor. This data is used only

by the area model built into VPR.

* R_minW_pmos — The resistance of minimum-width pmos transistor. This data is used only

by the area model built into VPR.
Required Yes
Specifies parameters used by the area model built into VPR.

<connection_block input_switch_name="string"/>

Required Attributes

* switch_name — Specifies the name of the <switch> in the <switchlist> used to
connect routing tracks to block input pins (i.e. the input connection block switch).

Required Yes

<area grid_logic_tile_ area="float"/>

3.1. Architecture Reference

71

Verilog-to-Routing Documentation, Release 8.1.0-dev

H-1

Fig. 3.12: Example FPGA grid

Logic Block

L L Connection
/ Block

Routing Track A
T A PE——— Isolation Buffer

Fig. 3.13: Input Pin Diagram.

72

Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Required Yes
Specifies the default area used by each 1x1 grid logic tile (in MWTAs), excluding routing.

Used for an area estimate of the amount of area taken by all the functional blocks.

Note: This value can be overriden for specific <pb_type>""s with the " area attribute.

<switch_block type="{wilton | subset | universal | custom}" fs="int"/>
Required Attributes
* type — The type of switch block to use.
e £s — The value of Fj
Required Yes

This parameter controls the pattern of switches used to connect the (inter-cluster) routing segments. Three fairly
simple patterns can be specified with a single keyword each, or more complex custom patterns can be specified.

Non-Custom Switch Blocks:

When using bidirectional segments, all the switch blocks have Fs = 3 [BFRV92]. That is, whenever horizontal
and vertical channels intersect, each wire segment can connect to three other wire segments. The exact topology
of which wire segment connects to which can be one of three choices. The subset switch box is the planar or
domain-based switch box used in the Xilinx 4000 FPGAs — a wire segment in track 0 can only connect to other
wire segments in track 0 and so on. The wilton switch box is described in [Wil97], while the universal switch
box is described in [CWW96]. To see the topology of a switch box, simply hit the “Toggle RR” button when
a completed routing is on screen in VPR. In general the wilton switch box is the best of these three topologies
and leads to the most routable FPGAs.

When using unidirectional segments, one can specify an Fj that is any multiple of 3. We use a modified wilton
switch block pattern regardless of the specified switch_block_type. For all segments that start/end at that switch
block, we follow the wilton switch block pattern. For segments that pass through the switch block that can also
turn there, we cannot use the wilton pattern because a unidirectional segment cannot be driven at an intermediate
point, so we assign connections to starting segments following a round robin scheme (to balance mux size).

Note: The round robin scheme is not tileable.

Custom Switch Blocks:

Specifying custom allows custom switch blocks to be described under the <switchblocklist> XML
node, the format for which is described in Custom Switch Blocks. If the switch block is specified as custom,
the £s field does not have to be specified, and will be ignored if present.

<chan_width_distr>content</chan _width distr>
Content inside this tag is only used when VPR is in global routing mode. The contents of this tag are described
in Global Routing Information.

<default_fc in_type="{frac|abs}" in_val="{int|float}" out_type="{frac|abs}" out_val="{int|:
This defines the default Fc specification, if it is not specified within a <fc> tag inside a top-level complex block.
The attributes have the same meaning as the <fc> tag attributes.

3.1. Architecture Reference 73

Verilog-to-Routing Documentation, Release 8.1.0-dev

3.1.6 Switches

The tags within the <switchlist> tag specifies the switches used to connect wires and pins together.

<switch type="{mux|tristate|pass_gate|short |buffer}" name="string" R="float" Cin="float" C
Describes a switch in the routing architecture.

Example:

<switch type="mux" name="my_awesome_mux" R="551" Cin=".77e-15" Cout="4e-15"_
—Cinternal="5e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>

Required Attributes
* type — The type of switch:

— mux: An isolating, configurable multiplexer

tristate: Anisolating, configurable tristate-able buffer

— pass_gate: A non-isolating, configurable pass gate

short: A non-isolating, non-configurable electrical short (e.g. between two segments).

buffer: An isolating, non-configurable non-tristate-able buffer (e.g. in-line along a
segment).

Isolation

Isolating switches include a buffer which partition their input and output into separate DC-
connected sub-circuits. This helps reduce RC wire delays.

Non-isolating switch do net isolate their input and output, which can increase RC wire
delays.

Configurablity
Configurable switches can be turned on/off at configuration time.

Non-configurable switches can not be controlled at configuration time. These are typically
used to model non-optional connections such as electrical shorts and in-line buffers.

* name — A unique name identifying the switch

* R — Resistance of the switch.

* Cin - Input capacitance of the switch.

* Cout — Output capacitance of the switch.
Optional Attributes

* Cinternal - Since multiplexers and tristate buffers are modeled as a parallel stream of
pass transistors feeding into a buffer, we would expect an additional “internal capacitance”
to arise when the pass transistor is enabled and the signal must propogate to the buffer. See
diagram of one stream below:

Pass Transistor

(continues on next page)

74 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

Input C Internal C Output C

Note: Only specify a value for multiplexers and/or tristate switches.

* Tdel - Intrinsic delay through the switch. If this switch was driven by a zero resistance
source, and drove a zero capacitance load, its delay would be: Tye; + R - Coyy.

The ‘switch’ includes both the mux and buffer mux type switches.

Note: Required if no <Tdel> tags are specified

Note: A <switch>’s resistance (R) and output capacitance (Cout) have no effect on
delay when used for the input connection block, since VPR does not model the resis-
tance/capacitance of block internal wires.

* buf_size — Specifies the buffer size in minimum-width transistor area (:term MWTA")
units.

If set to aut o, sized automatically from the R value. This allows you to use timing models
without R’s and C’s and still be able to measure area.

Note: Required for all isolating switch types.

Default: auto

* mux_trans_size — Specifies the size (in minimum width transistors) of each transistor
in the two-level mux used by mux type switches.

Note: Valid only for mux type switches.

* power_buf size — Used for power estimation. The size is the drive strength of the
buffer, relative to a minimum-sized inverter.

<Tdel num_inputs="int" delay="float"/>
Instead of specifying a single Tdel value, a list of Tdel values may be specified for different values of
switch fan-in. Delay is linearly extrapolated/interpolated for any unspecified fanins based on the two
closest fanins.

Required Attributes
* num_inputs — The number of switch inputs (fan-in)

* delay - The intrinsic switch delay when the switch topology has the specified number of
switch inputs

Example:

3.1. Architecture Reference 75

Verilog-to-Routing Documentation, Release 8.1.0-dev

<switch type="mux" name="my_mux" R="522" Cin="3.1le-15" Cout="3e-15" Cinternal=
—"5e-15" mux_trans_size="1.7" buf_size="23">

<Tdel num_inputs="12" delay="8.00e-11"/>

<Tdel num_inputs="15" delay="8.4e-11"/>

<Tdel num_inputs="20" delay="9.4e-11"/>
</switch>

Global Routing Information

If global routing is to be performed, channels in different directions and in different parts of the FPGA can be set to
different relative widths. This is specified in the content within the <chan_width_distr> tag.

Note: If detailed routing is to be performed, all the channels in the FPGA must have the same width.

<x distr="{gaussian|uniform|pulse|delta}" peak="float" width=" float" xpeak=" float" dc="
Required Attributes
* distr — The channel width distribution function
» peak — The peak value of the distribution
Optional Attributes
* width - The width of the distribution. Required for pulse and gaussian.
* xpeak — Peak location horizontally. Required for pulse, gaussian and delta.
* dc — The DC level of the distribution. Required for pulse, gaussian and delta.
Sets the distribution of tracks for the x-directed channels — the channels that run horizontally.
Most values are from O to 1.

If uniform is specified, you simply specify one argument, peak. This value (by convention between O and 1)
sets the width of the x-directed core channels relative to the y-directed channels and the channels between the
pads and core. Fig. 3.14 should clarify the specification of uniform (dashed line) and pulse (solid line) channel
widths. The gaussian keyword takes the same four parameters as the pulse keyword, and they are all interpreted
in exactly the same manner except that in the gaussian case width is the standard deviation of the function.

A

1 nulse/

—— width ———

xoeak is pulse midpoint

Relative
Channel uniform 0.5

Width [—— — 1 — — — — — — — —| 1 *******

Fractional Distance across FPGA

Fig. 3.14: Channel Distribution

The delta function is used to specify a channel width distribution in which all the channels have the same width
except one. The syntax is chan_width_x delta peak xpeak dc. Peak is the extra width of the single wide channel.
Xpeak is between 0 and 1 and specifies the location within the FPGA of the extra-wide channel — it is the
fractional distance across the FPGA at which this extra-wide channel lies. Finally, dc specifies the width of all
the other channels. For example, the statement chan_width_x delta 3 0.5 1 specifies that the horizontal channel
in the middle of the FPGA is four times as wide as the other channels.

Examples:

76 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

<x distr="uniform" peak="1"/>
<x distr="gaussian" width="0.5" peak="0.8" xpeak="0.6" dc="0.2"/>

<y distr="{gaussian|uniform|pulse|delta}" peak=" float" width=" float" =xpeak=" float" dc="
Sets the distribution of tracks for the y-directed channels.

See also:

<x distr>

3.1.7 Physical Tiles

The content within the <t i 1es> describes the physical tiles available in the FPGA. Each tile type is specified with
the <t ile> tag withing the <tiles> tag.

Tile

<tile name="string" capacity="int" width="int" height="int" area="float"/>
A tile refers to a placeable element within an FPGA architecture and describes its physical compositions on the
grid. The following attributes are applicable to each tile. The only required one is the name of the tile.

Attributes:
Required Attributes
* name — The name of this tile.
The name must be unique with respect to any other sibling <t i 1e> tag.
Optional Attributes
* width — The width of the block type in grid tiles
Default: 1
* height — The height of the block type in grid tiles
Default: 1
* area — The logic area (in MWTA) of the block type
Default: from the <area> tag
The following tags are common to all <tile> tags:

<sub_tile name'"string" capacity="{int}">

See also:

For a tutorial on describing the usage of sub tiles for heterogeneous tiles (tiles which support multiple
instances of the same or different Complex Blocks) definition see Heterogeneous tiles tutorial.

Describes one or many sub tiles corresponding to the physical tile. Each sub tile is identifies a set of one or more
stack location on a specific x, y grid location.

Attributes:
Required Attributes
¢ name — The name of this tile.

The name must be unique with respect to any other sibling <t i 1e> tag.

3.1. Architecture Reference 77

Verilog-to-Routing Documentation, Release 8.1.0-dev

Optional Attributes
* capacity - The number of instances of this block type at each grid location.
Default: 1

For example:

<sub_tile name="I0" capacity="2"/>

</sub_tile>

specifies there are two instances of the block type IO at each of its grid locations.

Note: It is mandatory to have at least one sub tile definition for each physical tile.

<input name="string" num pins="int" equivalent="{none|full}" is_non_clock _global="{tru
Defines an input port. Multple input ports are described using multiple <input > tags.

Required Attributes

* name — Name of the input port.

* num_pins — Number of pins the input port has.
Optional Attributes

* equivalent — Describes if the pins of the port are logically equivalent. Input logical
equivalence means that the pin order can be swapped without changing functionality. For
example, an AND gate has logically equivalent inputs because you can swap the order
of the inputs and it’s still correct; an adder, on the otherhand, is not logically equivalent
because if you swap the MSB with the LSB, the results are completely wrong. LUTs are
also considered logically equivalent since the logic function (LUT mask) can be rotated to
account for pin swapping.

— none: No input pins are logically equivalent.

Input pins can not be swapped by the router. (Generates a unique SINK rr-node for
each block input port pin.)

— full: Allinput pins are considered logically equivalent (e.g. due to logical equivalance
or a full-crossbar within the cluster).

All input pins can be swapped without limitation by the router. (Generates a single
SINK rr-node shared by each input port pin.)

default: none

* is_non_clock_global —

Note: Applies only to top-level pb_type.

Describes if this input pin is a global signal that is not a clock. Very useful for signals
such as FPGA-wide asynchronous resets. These signals have their own dedicated routing
channels and so should not use the general interconnect fabric on the FPGA.
<output name="string" num_pins="int" equivalent="{none|full|instance}"/>
Defines an output port. Multple output ports are described using multiple <output> tags

Required Attributes

78 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

* name — Name of the output port.
* num_pins — Number of pins the output port has.
Optional Attributes
* equivalent — Describes if the pins of the output port are logically equivalent:
— none: No output pins are logically equivalent.

Output pins can not be swapped by the router. (Generates a unique SRC rr-
node for each block output port pin.)

— full: All output pins are considered logically equivalent.

All output pins can be swapped without limitation by the router. For example,
this option would be appropriate to model an output port which has a full
crossbar between it and the logic within the block that drives it. (Generates a
single SRC rr-node shared by each output port pin.)

— instance: Models that sub-instances within a block (e.g. LUTs/BLEs) can be
swapped to achieve a limited form of output pin logical equivalence.

Like full, this generates a single SRC rr-node shared by each output port
pin. However, each net originating from this source can use only one output
pin from the equivalence group. This can be useful in modeling more complex
forms of equivalence in which you can swap which BLE implements which
function to gain access to different inputs.

Warning: When using instance equivalence you must be careful to
ensure output swapping would not make the cluster internal routing (pre-
viously computed by the clusterer) illegal; the tool does not update the
cluster internal routing due to output pin swapping.

Default: none

<clock name="string" num_pins="int" equivalent="{none|full}"/>
Describes a clock port. Multple clock ports are described using multiple <clock> tags. See above
descriptions on inputs

<equivalent_sites>

See also:
For a step-by-step walkthrough on describing equivalent sites see Equivalent Sites tutorial.

Describes the Complex Blocks that can be placed within a tile. Each physical tile can comprehend a
number from 1 to N of possible Complex Blocks, or sites. A site corresponds to a top-level Complex
Block that must be placeable in at least 1 physical tile locations.

<site pb_type="string" pin_mapping="string"/>

Required Attributes
* pb_type — Name of the corresponding pb_type.
Optional Attributes

* pin_mapping — Specifies whether the pin mapping between physical tile and logi-
cal pb_type:

3.1.

Architecture Reference 79

Verilog-to-Routing Documentation, Release 8.1.0-dev

— direct: the pin mapping does not need to be specified as the tile pin defini-
tion is equal to the corresponding pb_type one;

— custom: the pin mapping is user-defined.
Default: direct

Example: Equivalent Sites

<equivalent_sites>
<site pb_type="MLAB_SITE" pin_mapping="direct"/>

</equivalent_sites>

<direct from="string" to="string">
Desctibes the mapping of a physical tile’s port on the logical block’s (pb_type) port.
direct is an option sub-tag of site.

Note: This tag is need only if the pin_mapping of the site is defined as custom

Attributes:
— fromis relative to the physical tile pins
— toisrelative to the logical block pins

<direct from="MLAB_TILE.CX" to="MLAB_SITE.BX"/>

<fc in_type="{frac|abs}" in_val="{int|float}" out_type="{frac|abs}" out_val="{int|floa
Required Attributes
* in_type - Indicates how the F. values for input pins should be interpreted.
frac: The fraction of tracks of each wire/segment type.
abs: The absolute number of tracks of each wire/segment type.

* in_wval - Fraction or absolute number of tracks to which each input pin is con-
nected.

* out_type — Indicates how the F,. values for output pins should be interpreted.
frac: The fraction of tracks of each wire/segment type.
abs: The absolute number of tracks of each wire/segment type.

* out_val — Fraction or absolute number of wires/segments to which each output
pin connects.

Sets the number of tracks/wires to which each logic block pin connects in each channel bordering the pin.
The F, value [BFRV92] is interpreted as applying to each wire/segment type individually (see example).

When generating the FPGA routing architecture VPR will try to make ‘good’ choices about how pins and
wires interconnect; for more details on the criteria and methods used see [BROO].

Note: If <fc> is not specified for a complex block, the architecture’s <default_fc> is used.

Note: For unidirection routing architectures absolute F, values must be a multiple of 2.

80 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Example:

Consider a routing architecture with 200 length 4 (LL4) wires and 50 length 16 (L16) wires per channel,
and the following Fc specification:

<fc in_type="frac" in_val="0.1" out_type="abs" out_val="25">

The above specifies that each:

* input pin connects to 20 L4 tracks (10% of the 200 L4s) and 5 L16 tracks (10% of the 50 L16s),
and

* output pin connects to 25 L4 tracks and 25 L.16 tracks.

Overriding Values:

<fc_override fc_type="{frac|abs}" fc_val="{int|float}", port_name="{string}" segme

Allows F, values to be overriden on a port or wire/segment type basis.
Required Attributes
* fc_type - Indicates how the override F. value should be interpreted.
frac: The fraction of tracks of each wire/segment type.
abs: The absolute number of tracks of each wire/segment type.
» fc_val - Fraction or absolute number of tracks in a channel.
Optional Attributes

* port_name — The name of the port to which this override applies. If left
unspecified this override applies to all ports.

* segment_name - The name of the segment (defined under
<segmentlist>) to which this override applies. If left unspecified
this override applies to all segments.

Note: Atleast one of port_name or segment_name must be specified.

Port Override Example: Carry Chains

If you have complex block pins that do not connect to general interconnect (eg. carry chains), you
would use the <fc_override> tag, within the <fc> tag, to specify them:

<fc_override fc_type="frac" fc_val="0" port_name="cin"/>
<fc_override fc_type="frac" fc_val="0" port_name="cout"/>

Where the attribute port_name is the name of the pin (cin and cout in this example).
Segment Override Example:

It is also possible to specify per <segment> (i.e. routing wire) overrides:

<fc_override fc_type="frac" fc_val="0.1" segment_name="L1L4"/>

Where the above would cause all pins (both inputs and outputs) to use a fractional F. of 0.1 when
connecting to segments of type L4.

Combined Port and Segment Override Example:

The port_name and segment_name attributes can be used together. For example:

3.1.

Architecture Reference 81

Verilog-to-Routing Documentation, Release 8.1.0-dev

<fc_override fc_type="frac" fc_val="0.1" port_name="my_input" segment_
—name="L4"/>
<fc_override fc_type="frac" fc_val="0.2" port_name="my_output" segment_
—name="L4"/>

specifies that port my__input use a fractional F, of 0.1 when connecting to segments of type L4,
while the port my_output uses a fractional I, of 0.2 when connecting to segments of type L4.
All other port/segment combinations would use the default F|. values.

<pinlocations pattern="{spread|perimeter|custom}">
Required Attributes
* pattern—

— spread denotes that the pins are to be spread evenly on all sides of the com-
plex block.

Note: Includes internal sides of blocks with width > 1 and/or height > 1.

— perimeter denotes that the pins are to be spread evenly on perimeter sides
of the complex block.

Note: Excludes the internal sides of blocks with width > 1 and/or height
> 1.

— spread_inputs_perimeter_outputs denotes that inputs pins are to
be spread on all sides of the complex block, but output pins are to be spread
only on perimeter sides of the block.

Note: This is useful for ensuring outputs do not connect to wires which
fly-over a width > 1 and height > 1 block (e.g. if using short orbuffer
connections instead of a fully configurable switch block within the block).

— custom allows the architect to specify specifically where the pins are to be
placed using <1oc> tags.

Describes the locations where the input, output, and clock pins are distributed in a complex logic block.

<loc side="{left|right|bottom|top}" xoffset="int" yoffset="int">name_of complex lo

Note: ... represents repeat as needed. Do not put . . . in the architecture file.

Required Attributes

* side — Specifies which of the four sides of a grid location the pins in the
contents are located.

Optional Attributes

* xoffset — Specifies the horizontal offset (in grid units) from block origin
(bottom left corner). The offset value must be less than the width of the block.

82 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Default: 0

» yoffset — Specifies the vertical offset (in grid units) from block origin (bot-
tom left corner). The offset value must be less than the height of the block.

Default: 0
Physical equivalence for a pin is specified by listing a pin more than once for different locations. For

example, a LUT whose output can exit from the top and bottom of a block will have its output pin
specified twice: once for the top and once for the bottom.

Note: If the <pinlocations> tagis missing, a spread pattern is assumed.

<switchblock_ locations pattern="{external_ full_ internal_ straight|all|external|internal |non
Describes where global routing switchblocks are created in relation to the complex block.

Note: If the <switchblock_locations> tag is left unspecified the default pattern is assumed.

Optional Attributes
* pattern -

— external_full_internal_straight: creates full switchblocks outside
and straight switchblocks inside the complex block

— all: creates switchblocks wherever routing channels cross

— external: creates switchblocks wherever routing channels cross outside the
complex block

— internal: creates switchblocks wherever routing channels cross inside the com-
plex block

— none: denotes that no switchblocks are created for the complex block

— custom: allows the architect to specify custom switchblock locations and types
using <sb_loc> tags

Default: external_full_internal_straight
Optional Attributes

e internal_switch — The name of a switch (from <switchlist>) which should
be used for internal switch blocks.

Default: The default switch for the wire <segment>

Note: This is typically used to specify that internal wire segments are electrically
shorted together using a short type <switch>.

Example: Electrically Shorted Internal Straight Connections

In some architectures there are no switch blocks located ‘within’ a block, and the wires crossing over the block
are instead electrcially shorted to their ‘straight-through’ connections.

To model this we first define a special short type switch to electrically short such segments together:

3.1. Architecture Reference 83

Verilog-to-Routing Documentation, Release 8.1.0-dev

[T
[T

JIUE U IS

—

Jiu
R

[T
[T
[T

Ji
R

i il nlis
I =L =TT
AN cER e
I =T =
AR e

LT
[T

All External Internal

L L L

N e ==
R == R =

None External Full
Internal Straight

Fig. 3.15: Switchblock Location Patterns for a width = 2, height = 3 complex block

84 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

<switchlist>
<switch type="short" name="electrical_short" R="0" Cin="0" Tdel="0"/>
</switchlist>

Next, we use the pre-defined external_full_internal_straight pattern, and that such connections

should use our electrical_short switch.

—"electrical_short"/>

<switchblock_locations pattern="external full_ internal straight" internal_ switch=

<sb_loc type="{full|straight|turns|none}" xoffset="int" yoffset="int",

switch_override

Specifies the type of switchblock to create at a particular location relative to a complex block for the

custom switchblock location pattern.
Required Attributes
* type — Specifies the type of switchblock to be created at this location:

— full: denotes that a full switchblock will be created (i.e. both staight and
turns)

— straight: denotes that a switchblock with only straight-through connec-
tions will be created (i.e. no turns)

— turns: denotes that a switchblock with only turning connections will be cre-
ated (i.e. no straight)

— none: denotes that no switchblock will be created

Default: full

JIQ J U
R R

Full Straight Turns None

Fig. 3.16: Switchblock Types

Optional Attributes

» xoffset — Specifies the horizontal offset (in grid units) from block origin (bottom
left corner). The offset value must be less than the width of the block.

Default: 0

» yoffset — Specifies the vertical offset (in grid units) from block origin (bottom
left corner). The offset value must be less than the height of the block.

Default: 0

3.1. Architecture Reference

85

Verilog-to-Routing Documentation, Release 8.1.0-dev

e switch_override — The name of a switch (from <switchlist>) which
should be used to construct the switch block at this location.

Default: The default switch for the wire <segment>

Note: The switchblock associated with a grid tile is located to the top-right of the grid tile

Example: Custom Description of Electrically Shorted Internal Straight Connections

If we assume a width=2, height=3 block (e.g. Fig. 3.15), we can use a custom pattern to specify an
architecture equivalent to the ‘Electrically Shorted Internal Straight Connections’ example:

<switchblock_locations pattern="custom">

<!-— Internal: using straight electrical shorts ——>

<sb_loc type="straight" xoffset="0" yoffset="0" switch_override=
—"electrical_short">

<sb_loc type="straight" xoffset="0" yoffset="1" switch_override=
—"electrical_short">

<!-—- External: using default switches —-—>

<sb_loc type="full" xoffset="0" yoffset="2"> <!/-- Top edge ——>
<sb_loc type="full" xoffset="1" yoffset="0"> </-—- Right edge —-—>
<sb_loc type="full" xoffset="1" yoffset="1"> <!/-- Right edge -->
<sb_loc type="full" xoffset="1" yoffset="2"> <!-- Top Right -->

<switchblock_locations/>

3.1.8 Complex Blocks

See also:
For a step-by-step walkthrough on building a complex block see Architecture Modeling.

The content within the <complexblocklist> describes the complex blocks found within the FPGA. Each type of
complex block is specified with a top-level <pb_t ype> tag within the <complexblocklist> tag.

PB Type

<pb_type name="string" num_pb="int" blif model="string"/>
Specifies a top-level complex block, or a complex block’s internal components (sub-blocks). Which attributes
are applicable depends on where the <pb_t ype> tag falls within the hierarchy:
* Top Level: A child of the <complexblocklist>
¢ Intermediate: A child of another <pb_type>
¢ Primitive/Leaf: Contains no <pb_type> children
For example:

<complexblocklist>
<pb_type name="CLB"/> <!-- Top level ——>
<pb_type name="ble"/> <!/-- Intermediate ——>
<pb_type name="lut"/> <!-- Primitive —->
</pb_type>
<pb_type name="ff"/> </-— Primitive —-—>

(continues on next page)

86 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

</pb_type>
</pb_type>

</pb_type>

</complexblocklist>

General:
Required Attributes

* name — The name of this pb_type.

The name must be unique with respect to any parent, sibling, or child <pb_type>.
Top-level, Intermediate or Primitive:
Optional Attributes

* num_pb — The number of instances of this pb_type at the current hierarchy level.
Default: 1

For example:

<pb_type name="CLB">
<pb_type name="ble" num_pb="10"/>

</pb_type>

</pb_type>

would specify that the pb_type CLB contains 10 instances of the ble pb_type.
Primitive Only:
Required Attributes

* blif model - Specifies the netlist primitive which can be implemented by this
pb_type.

Accepted values:

.input: A BLIF netlist input

— .output: A BLIF netlist output

— .names: A BLIF .names (LUT) primitive

— .latch: A BLIF .latch (DFF) primitive

— .subckt <custom_type>: A user defined black-box primitive.

For example:

<pb_type name="my_adder" blif_model=".subckt adder"/>

</pb_type>

would specify that the pb_type my_adder can implement a black-box BLIF primitive
named adder.

3.1.

Architecture Reference 87

Verilog-to-Routing Documentation, Release 8.1.0-dev

Note: The input/output/clock ports for primitive pb_types must match the ports speci-
fied in the <mode1s> section.

Optional Attributes

* class — Specifies that this primitive is of a specialized type which should be treated
specially.

See also:
Classes for more details.
The following tags are common to all <pb_type> tags:

<input name="string" num pins="int" equivalent="{none|full}" is_non_clock _global="{true| fa.
Defines an input port. Multple input ports are described using multiple <input> tags.
Required Attributes

* name — Name of the input port.
* num_pins — Number of pins the input port has.
Optional Attributes

* equivalent -

Note: Applies only to top-level pb_type.

Describes if the pins of the port are logically equivalent. Input logical equivalence
means that the pin order can be swapped without changing functionality. For example,
an AND gate has logically equivalent inputs because you can swap the order of the in-
puts and it’s still correct; an adder, on the otherhand, is not logically equivalent because
if you swap the MSB with the LSB, the results are completely wrong. LUTs are also
considered logically equivalent since the logic function (LUT mask) can be rotated to
account for pin swapping.

— none: No input pins are logically equivalent.

Input pins can not be swapped by the router. (Generates a unique SINK
rr-node for each block input port pin.)

— full: All input pins are considered logically equivalent (e.g. due to logical equiv-
alance or a full-crossbar within the cluster).

All input pins can be swapped without limitation by the router. (Generates
a single SINK rr-node shared by each input port pin.)

default: none

* is_non_clock_global —

Note: Applies only to top-level pb_type.

Describes if this input pin is a global signal that is not a clock. Very useful for sig-
nals such as FPGA-wide asynchronous resets. These signals have their own dedicated
routing channels and so should not use the general interconnect fabric on the FPGA.

88 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

<output name="string" num pins="int" equivalent="{none|full|instance}"/>
Defines an output port. Multple output ports are described using multiple <output> tags
Required Attributes

* name — Name of the output port.

* num_pins — Number of pins the output port has.

Optional Attributes

* equivalent —

Note: Applies only to top-level pb_type.

Describes if the pins of the output port are logically equivalent:
— none: No output pins are logically equivalent.

Output pins can not be swapped by the router. (Generates a unique SRC
rr-node for each block output port pin.)

— full: All output pins are considered logically equivalent.

All output pins can be swapped without limitation by the router. For ex-
ample, this option would be appropriate to model an output port which
has a full crossbar between it and the logic within the block that drives it.
(Generates a single SRC rr-node shared by each output port pin.)

— instance: Models that sub-instances within a block (e.g. LUTs/BLEs) can be
swapped to achieve a limited form of output pin logical equivalence.

Like full, this generates a single SRC rr-node shared by each output
port pin. However, each net originating from this source can use only one
output pin from the equivalence group. This can be useful in modeling
more complex forms of equivalence in which you can swap which BLE
implements which function to gain access to different inputs.

Warning: When using instance equivalence you must be careful
to ensure output swapping would not make the cluster internal routing
(previously computed by the clusterer) illegal; the tool does not update
the cluster internal routing due to output pin swapping.

Default: none

<clock name="string" num pins="int" equivalent="{none|full}"/>
Describes a clock port. Multple clock ports are described using multiple <clock> tags. See above descriptions
on inputs

<mode name="string" disable_packing="bool">
Required Attributes

* name — Name for this mode. Must be unique compared to other modes.
Specifies a mode of operation for the <plb_type>. Each child mode tag denotes a different mode of operation
for the <pb_type>. Each mode tag may contains other <pb_type> and <interconnect> tags.

Note: Modes within the same parent <pb_t ype> are mutually exclusive.

3.1. Architecture Reference 89

Verilog-to-Routing Documentation, Release 8.1.0-dev

Note: If a <pb_type> has only one mode of operation the mode tag can be omitted.

Optional Attributes

* disable_packing — Specify if a mode is disabled or not for VPR packer. When a
mode is defined to be disabled for packing (disable_packing="true"), packer
will not map any logic to the mode. This optional syntax aims to help debugging of
multi-mode <pb_type> so that users can spot bugs in their XML definition quickly.
By default, itis set to false.

Note: When a mode is specified to be disabled for packing, its child <pb_type> and the <mode> of
child <pb_type> will be considered as disabled for packing automatically. There is no need to specify
disable_packing for every <mode> in the tree of <pb_type>.

Warning: This is a power-user debugging option. See Multi-mode Logic Block Tutorial for a detailed
how-to-use.

For example:

<!--A fracturable 6-input LUT-->
<pb_type name="lut">

<mode name="lut6">
<!--Can be used as a single 6-LUT——>
<pb_type name="1lut6" num_pb="1">
</pb_type>

</mode>

<mode name="lut5x2">
<!--Or as two 5-LUTs——>
<pb_type name="1ut5" num_pb="2">
</pb_type>

</mode>

</pb_type>

specifies the 1ut pb_type can be used as either a single 6-input LUT, or as two 5-input LUTs (but not both).

Interconnect
As mentioned earlier, the mode tag contains <pb_type> tags and an <interconnect> tag. The following de-
scribes the tags that are accepted in the <interconnect > tag.

<complete name="string" input="string" output="string"/>
Required Attributes

e name — Identifier for the interconnect.

e input — Pins that are inputs to this interconnect.

90 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

* output — Pins that are outputs of this interconnect.
Describes a fully connected crossbar. Any pin in the inputs can connect to any pin at the output.

Example:

<complete input="Top.in" output="Child.in"/>

Fig. 3.17: Complete interconnect example.

<direct name="string" input="string" output="string"/>
Required Attributes

¢ name — Identifier for the interconnect.
e input — Pins that are inputs to this interconnect.

* output — Pins that are outputs of this interconnect.

3.1. Architecture Reference 91

Verilog-to-Routing Documentation, Release 8.1.0-dev

Describes a 1-to-1 mapping between input pins and output pins.

Example:

<direct input="Top.in[2:1]" output="Child[1].in"/>

Top

In
Child

Child

Fig. 3.18: Direct interconnect example.
<mux name="string" input="string" output="string"/>
Required Attributes
* name — Identifier for the interconnect.

* input — Pins that are inputs to this interconnect. Different data lines are separated by
a space.

* output — Pins that are outputs of this interconnect.
Describes a bus-based multiplexer.

Note: Buses are not yet supported so all muxes must use one bit wide data only!

Example:

<mux input="Top.A Top.B" output="Child.in"/>

A <complete>, <direct>, or <mux> tag may take an additional, optional, tag called <pack_pattern> thatis
used to describe molecules. A pack pattern is a power user feature directing that the CAD tool should group certain
netlist atoms (eg. LUTs, FFs, carry chains) together during the CAD flow. This allows the architect to help the CAD
tool recognize structures that have limited flexibility so that netlist atoms that fit those structures be kept together as
though they are one unit. This tag impacts the CAD tool only, there is no architectural impact from defining molecules.

<pack_pattern name="string" in_port="string" out_port="string"/>

92 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Top

B Child

Fig. 3.19: Mux interconnect example.

Warning: This is a power user option. Unless you know why you need it, you probably shouldn’t specify
it.

Required Attributes
* name — The name of the pattern.
e in_port — The input pins of the edges for this pattern.
e out_port — Which output pins of the edges for this pattern.

This tag gives a hint to the CAD tool that certain architectural structures should stay together during packing.
The tag labels interconnect edges with a pack pattern name. All primitives connected by the same pack pattern
name becomes a single pack pattern. Any group of atoms in the user netlist that matches a pack pattern are
grouped together by VPR to form a molecule. Molecules are kept together as one unit in VPR. This is useful
because it allows the architect to help the CAD tool assign atoms to complex logic blocks that have interconnect
with very limited flexibility. Examples of architectural structures where pack patterns are appropriate include:
optionally registered inputs/outputs, carry chains, multiply-add blocks, etc.

There is a priority order when VPR groups molecules. Pack patterns with more primitives take priority over
pack patterns with less primitives. In the event that the number of primitives is the same, the pack pattern with
less inputs takes priority over pack patterns with more inputs.

Special Case:

To specify carry chains, we use a special case of a pack pattern. If a pack pattern has exactly one connection to
a logic block input pin and exactly one connection to a logic block output pin, then that pack pattern takes on
special properties. The prepacker will assume that this pack pattern represents a structure that spans multiple
logic blocks using the logic block input/output pins as connection points. For example, lets assume that a logic
block has two, 1-bit adders with a carry chain that links adjacent logic blocks. The architect would specify those
two adders as a pack pattern with links to the logic block cin and cout pins. Lets assume the netlist has a group
of 1-bit adder atoms chained together to form a 5-bit adder. VPR will break that 5-bit adder into 3 molecules:
two 2-bit adders and one 1-bit adder connected in order by a the carry links.

Example:

Consider a classic basic logic element (BLE) that consists of a LUT with an optionally registered flip-flop. If a
LUT is followed by a flip-flop in the netlist, the architect would want the flip-flop to be packed with the LUT in
the same BLE in VPR. To give VPR a hint that these blocks should be connected together, the architect would
label the interconnect connecting the LUT and flip-flop pair as a pack_pattern:

3.1. Architecture Reference 93

Verilog-to-Routing Documentation, Release 8.1.0-dev

<pack_pattern name="ble" in_port="lut.out" out_port="ff.D"/>

Pre-group LUT+FF
pair-into “Molecule

"

BLE y

Lt ble| Flip-Flop

>

Pack pattern LUT+FF pair

Fig. 3.20: Pack Pattern Example.

Classes

Using these structures, we believe that one can describe any digital complex logic block. However, we believe that
certain kinds of logic structures are common enough in FPGAs that special shortcuts should be available to make their
specification easier. These logic structures are: flip-flops, LUTs, and memories. These structures are described using
a class=string attribute in the <plb_type> primitive. The classes we offer are:

class="1lut"
Describes a K-input lookup table.

The unique characteristic of a lookup table is that all inputs to the lookup table are logically equivalent. When
this class is used, the input port must have a port_class="1lut_in" attribute and the output port must have
aport_class="1lut_out" attribute.

class="flipflop"
Describes a flipflop.

Input port must have a port_class="D" attribute added. Output port must have a port_class="Q"
attribute added. Clock port must have a port_class="clock" attribute added.

class="memory"
Describes a memory.

Memories are unique in that a single memory physical primitive can hold multiple, smaller, logical memories
as long as:
1. The address, clock, and control inputs are identical and
2. There exists sufficient physical data pins to satisfy the netlist memories when the different netlist memo-
ries are merged together into one physical memory.
Different types of memories require different attributes.

Single Port Memories Require:
* An input port with port_class="address" attribute
* Aninput port with port_class="data_in" attribute
* An input port with port_class="write_en" attribute

94 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

* An output port with port_class="data_out" attribute
¢ A clock port with port_class="clock" attribute
Dual Port Memories Require:
* Aninput port with port_class="address1" attribute
* An input port with port_class="data_inl" attribute
* An input port with port_class="write_enl" attribute
* An input port with port_class="address2" attribute
* Aninput port with port_class="data_in2" attribute
* An input port with port_class="write_en2" attribute
e An output port with port_class="data_outl" attribute
* An output port with port_class="data_out2" attribute
* A clock port with port_class="clock™" attribute

Timing
See also:
For examples of primitive timing modeling specifications see the Primitive Block Timing Modeling Tutorial

Timing is specified through tags contained with in pb_type, complete, direct, or mux tags as follows:

<delay_constant max="float" min="float" in_port="string" out_port="string"/>
Optional Attributes

* max — The maximum delay value.

* min — The minimum delay value.
Required Attributes

* in_port — The input port name.

* out_port — The output port name.
Specifies a maximum and/or minimum delay from in_port to out_port.
e If in_port and out_port are non-sequential (i.e combinational) inputs specifies the combinational
path delay between them.
e If in_port and out_port are sequential (i.e. have T_setup and/or T_clock_to_Q tags) specifies
the combinational delay between the primitive’s input and/or output registers.

Note: At least one of the max or min attributes must be specified

Note: If only one of max or min are specified the unspecified value is implicitly set to the same value

<delay matrix type="{max | min}" in_port="string" out_port="string"> matrix </delay>
Required Attributes

* type — Specifies the delay type.
e in_port - The input port name.
* out_port — The output port name.

* matrix — The delay matrix.
Describe a timing matrix for all edges going from in_port to out_port. Number of rows of matrix should
equal the number of inputs, number of columns should equal the number of outputs.
e If in_port and out_port are non-sequential (i.e combinational) inputs specifies the combinational
path delay between them.

3.1. Architecture Reference 95

Verilog-to-Routing Documentation, Release 8.1.0-dev

e Ifin_port and out_port are sequential (i.e. have T_setup and/or T_clock_to_Q tags) specifies
the combinational delay between the primitive’s input and/or output registers.
Example: The following defines a delay matrix for a 4-bit input port in, and 3-bit output port out:

<delay_matrix type="max" in_port="in" out_port="out">
1.2e-10 1.4e-10 3.2e-10

4.6e-10 1.9e-10 2.2e-10

4.5e-10 6.7e-10 3.5e-10

7.1le-10 2.9e-10 8.7e-10
</delay>

Note: To specify both max and min delays two <delay_matrix> should be used.

<T_setup value="float" port="string" clock="string"/>
Required Attributes

e value - The setup time value.
» port — The port name the setup constraint applies to.

¢ clock — The port name of the clock the setup constraint is specified relative to.
Specifies a port’s setup constraint.
* If port is an input specifies the external setup time of the primitive’s input register (i.e. for paths termi-
nating at the input register).
» If port is an output specifies the internal setup time of the primitive’s output register (i.e. for paths
terminating at the output register) .

Note: Applies only to primitive <pb_type> tags

<T_hold value="float" port="string" clock="string"/>
Required Attributes

* value - The hold time value.
e port — The port name the setup constraint applies to.

* clock - The port name of the clock the setup constraint is specified relative to.
Specifies a port’s hold constraint.
 If port is an input specifies the external hold time of the primitive’s input register (i.e. for paths termi-
nating at the input register).
e If port is an output specifies the internal hold time of the primitive’s output register (i.e. for paths
terminating at the output register) .

Note: Applies only to primitive <pb_type> tags

<T_clock_to_Q max="float" min="float" port="string" clock="string"/>
Optional Attributes

* max — The maximum clock-to-Q delay value.

e min — The minimum clock-to-Q delay value.
Required Attributes

* port — The port name the delay value applies to.

* clock — The port name of the clock the clock-to-Q delay is specified relative to.
Specifies a port’s clock-to-Q delay.

96 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

* If port is an input specifies the internal clock-to-Q delay of the primitive’s input register (i.e. for paths
starting at the input register).

e If port is an output specifies the external clock-to-Q delay of the primitive’s output register (i.e. for
paths starting at the output register) .

Note: At least one of the max or min attributes must be specified

Note: If only one of max or min are specified the unspecified value is implicitly set to the same value

Note: Applies only to primitive <pb_type> tags

Modeling Sequential Primitive Internal Timing Paths

See also:
For examples of primitive timing modeling specifications see the Primitive Block Timing Modeling Tutorial

By default, if only <T_setup> and <T_clock_to_Q> are specified on a primitive pb_type no internal timing
paths are modeled. However, such paths can be modeled by using <delay_constant> and/or <delay_matrix>
can be used in conjunction with <T_setup> and <T_clock_to_Q>. This is useful for modeling the speed-limiting
path of an FPGA hard block like a RAM or DSP.

As an example, consider a sequential black-box primitive named seq_foo which has an input port in, output port
out, and clock c1lk:

<pb_type name="seq_foo" blif model=".subckt seq_foo" num_pb="1">
<input name="in" num_pins="4"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>

<!-- external -->
<T_setup value="80e-12" port="seqg foo.in" clock="clk"/>
<T_clock_to_Q max="20e-12" port="seq foo.out" clock="clk"/>

<!-- internal -->
<T_clock_to_Q max="10e-12" port="seq foo.in" clock="clk"/>
<delay_constant max="0.9e-9" in_port="seg foo.in" out_port="seq foo.out"/>
<T_setup value="90e-12" port="seqg foo.out" clock="clk"/>
</pb_type>

To model an internal critical path delay, we specify the internal clock-to-Q delay of the input register (10ps), the
internal combinational delay (0.9ns) and the output register’s setup time (90ps). The sum of these delays corresponds
to a lns critical path delay.

Note: Primitive timing paths with only one stage of registers can be modeled by specifying <T_setup> and
<T_clock_to_Q> on only one of the ports.

3.1. Architecture Reference 97

Verilog-to-Routing Documentation, Release 8.1.0-dev

Power

See also:
Power Estimation, for the complete list of options, their descriptions, and required sub-fields.

<power method="string">contents</power>
Optional Attributes

* method — Indicates the method of power estimation used for the given pb_type.

Must be one of:

— specify-size

— auto-size

- pin-toggle

— C-internal

- absolute

— ignore

— sum-of-children
Default: auto-size.
See also:

Power Architecture Modelling for a detailed description of the various power estimation
methods.
The contents of the tag can consist of the following tags:
* <dynamic_power>
* <static_power>
* <pin>

<dynamic_power power_ per_ instance="float" C_internal="float"/>
Optional Attributes

e power_per_instance — Absolute power in Watts.
* C_internal - Block capacitance in Farads.

<static_power power_ per_instance="float"/>
Optional Attributes

e power_per_instance — Absolute power in Watts.

<port name="string" energy per_toggle="float" scaled by static_prob="string" scaled by_sta:
Required Attributes

* name — Name of the port.
* energy_per_toggle — Energy consumed by a toggle on the port specified in name.
Optional Attributes

* scaled_by static_prob - Port name by which to scale
energy_per_toggle based on its logic high probability.

* scaled_by_ static_prob_n - Port name by which to scale
energy_per_toggle based on its logic low probability.

98 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

3.1.9 Wire Segments
The content within the <segment11ist> tag consists of a group of <segment> tags. The <segment> tag and its
contents are described below.

<segment name="unique_name" length="int" type="{bidir|unidir}" freq="float" Rmetal="float"
Required Attributes

* name — A unique alphanumeric name to identify this segment type.

* length - Either the number of logic blocks spanned by each segment, or the keyword
longline. Longline means segments of this type span the entire FPGA array.

Note: longline is only supported on with bidir routing

e freq - The supply of routing tracks composed of this type of segment. VPR automati-
cally determines the percentage of tracks for each segment type by taking the frequency
for the type specified and dividing with the sum of all frequencies. It is recommended
that the sum of all segment frequencies be in the range 1 to 100.

* Rmetal — Resistance per unit length (in terms of logic blocks) of this wiring track, in
Ohms. For example, a segment of length 5 with Rmetal = 10 Ohms / logic block would
have an end-to-end resistance of 50 Ohms.

* Cmetal — Capacitance per unit length (in terms of logic blocks) of this wiring track, in
Farads. For example, a segment of length 5 with Cmetal = 2e-14 F / logic block would
have a total metal capacitance of 10e-13F.

e directionality — This is either unidirectional or bidirectional and indicates
whether a segment has multiple drive points (bidirectional), or a single driver at one
end of the wire segment (unidirectional). All segments must have the same directional-
ity value. See [LLTY04] for a description of unidirectional single-driver wire segments.

¢ content — The switch names and the depopulation pattern as described below.

e

= & Connection Box

= =X, =
e <

—-XSo—b—B8J

Fig. 3.21: Switch block and connection block pattern example with four tracks per channel

<sb type="pattern'">int list</sb>
This tag describes the switch block depopulation (as illustrated in Fig. 3.21) for this particular wire segment.
For example, the first length 6 wire in the figure below has an sb patternof 1 0 1 0 1 0 1. The second
wire has apatternof 0 1 0 1 0 1 0. A 1 indicates the existence of a switch block and a 0 indicates that
there is no switch box at that point. Note that there a 7 entries in the integer list for a length 6 wire. For a length
L wire there must be L+1 entries separated by spaces.

Note: Can not be specified for Longline segments (which assume full switch block population)

<cb type="pattern">int list</cb>
This tag describes the connection block depopulation (as illustrated by the circles in Fig. 3.21) for this particular
wire segment. For example, the first length 6 wire in the figure below has an sbpatternof 1 1 1 1 1 1. The
third wire has a patternof 1 0 0 1 1 0. A 1 indicates the existence of a connection block and a 0 indicates

3.1. Architecture Reference 99

Verilog-to-Routing Documentation, Release 8.1.0-dev

that there is no connection box at that point. Note that there a 6 entries in the integer list for a length 6 wire. For
a length L wire there must be L entries separated by spaces.

Note: Can not be specified for Longline segments (which assume full connection block population)

<mux name="string"/>
Required Attributes

* name — Name of the mux switch type used to drive this type of segment.

Note: For UNIDIRECTIONAL only.

Tag must be included and name must be the same as the name you give in <switch type="mux"
name="...

<wire_switch name="string"/>
Required Attributes

* name — Name of the switch type used by other wires to drive this type of segment.

Note: For BIDIRECTIONAL only.

Tag must be included and the name must be the same as the name you give in <switch
type="tristate|pass_gate" name="... for the switch which represents the wire switch in your
architecture.

<opin_switch name="string"/>

Note: For BIDIRECTIONAL only.

Required Attributes
* name — Name of the switch type used by block pins to drive this type of segment.

Tag must be included and name must be the same as the name you give in <switch
type="tristate|pass_gate" name="... for the switch which represents the output pin switch in
your architecture.

Note: In unidirectional segment mode, there is only a single buffer on the segment. Its type is specified by
assigning the same switch index to both wire_switch and opin_switch. VPR will error out if these two are not
the same.

Note: The switch used in unidirectional segment mode must be buffered.

100 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

3.1.10 Clocks
There are two options for describing clocks. One method allows you to specify clocking purely for power estimation,
see Specifing Clocking Purely for Power Estimation. The other method allows you to specify a clock architecture

that is used as part of the routing resources, see Specifing a Clock Architecture. Both methods should not be used in
tandem.

Specifing Clocking Purely for Power Estimation

The clocking configuration is specified with <clock> tags within the <clocks> section.

Note: Currently the information in the <clocks> section is only used for power estimation.

See also:
Power Estimation for more details.

<clock C_wire="float" C_wire_per_m="float" buffer_size={"float"|"auto"}/>
Optional Attributes

* C_wire — The absolute capacitance, in Farads, of the wire between each clock buffer.
* C_wire_per_m- The wire capacitance, in Farads per Meter.

e buffer size — The size of each clock buffer.

Specifing a Clock Architecture

The element <clocknetworks> contains three sub-elements that collectively describe the clock architecture: the
wiring parameters <metal_layers>, the clock distribution <clock_network>, and the clock connectivity
<clock_routing>.

Clock Architecture Example

The following example shows how a rib-spine (row/column) style clock architecture can be defined.

<clocknetworks>
<metal_layers >
<metal_layer name="global_ spine" Rmetal="50.42" Cmetal="20.7e-15"/>
<metal_layer name="global_rib" Rmetal="50.42" Cmetal="20.7e-15"/>
</metal_layers >

<!—-— Full Device: Center Spine ——>
<clock_network name="spinel" num_inst="2">
<spine metal_layer="global_spine" x="W/2" starty="0" endy="H">
<switch_point type="drive" name="drive_point" yoffset="H/2" buffer="drive_
<buff"/>
<switch_point type="tap" name="taps" yoffset="0" yincr="1"/>
</spine>
</clock_network>

<!-- Full Device: Each Grid Row ——>
<clock_network name="ribl" num_inst="2">
<rib metal_layer="global_ rib" y="0" startx="0" endx="W" repeatx="W" repeaty="1

Ny

(continues on next page)

3.1. Architecture Reference 101

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<switch_point type="drive" name="drive_point" xoffset="W/2" buffer="drive_
Sbuff"/>
<switch_point type="tap" name="taps" xoffset="0" xincr="1"/>
</rib>
</clock_network>

<clock_routing>
<!-- connections from inter-block routing to central spine ——->
<tap from="ROUTING" to="spinel.drive_point" locationx="W/2" locationy="H/2"
—switch="general_routing_switch" fc_val="1.0"/>

<!-- connections from spine to rib ——>
<tap from="spinel.taps" to="ribl.drive_point" switch="general_routing_switch"
—fc_val="0.5"/>

<!-- connections from rib to clock pins -->
<tap from="ribl.taps" to="CLOCK" switch="ipin_cblock" fc_val="1.0"/>
</clock_routing >
</clocknetworks >

paramendy = H T
H-1 +

H-2 1+

\

taps < 2nd instance
H-3 + ™~

H/2 -X- drive ——> drive buffer

param starty =0 -

0 param x = W/2 w

Fig. 3.22: <spine> “spinel” vertical clock wire example. The two spines (num_inst="2") are located horizon-
tally at W/ 2 (in the middle of the device), and spans the entire height of the device (0..H). The drive points are located
at H/ 2, with tap points located at unit increments along their length. Buffers of drive_buff type (would be defined
in <switches>) are used to drive the two halves of the spines.

102 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Hx

t

param repeaty =1

|

0o+ —t

| ! ! oo)'(...... | ! | —
I 1 1 1 I I I |
param startx =0 1 2 3 W/2 W-3 W-2 W-1 W =param endx

Fig. 3.23: <rib> “rib1” horizontal clock wire example. Each rib spans the full width of the device (0..W), with the
drive points located at the mid-point (W/ 2), and tap points in unit increments along each rib. There are two ribs at each
vertical location (num_1inst="2"), and pairs of ribs are stamped out at each row of the device (repeaty="1").

3.1. Architecture Reference 103

Verilog-to-Routing Documentation, Release 8.1.0-dev

Clock Architecture Tags

The <metal_layers> element describes the per unit length electrical parameters, resistance (Rmetal) and capac-
itance (Cmetel), used to implement the clock distribution wires. Wires are modeled soley based on Rmetal and
Cmetal parameters which are derived from the physical implementation of the metal layer width and spacing. There
can be one or more wiring implementation options (metal layer, width and spacing) that are used by the later clock
network specification and each is described in a separate <metal_ layer> sub-element. The syntax of the wiring
electrical information is:

<metal_layer name="string" Rmetal="float" Cmetal="float"/>
Required Attributes

* name — A unique string for reference.

* Rmetal — The resistance in Ohms of the wire per unit block in the FPGA architecture;
a unit block usually corresponds to a logic cluster.

Req_pram Cmetal The capacitance in Farads of the wire per unit block.

The <clock_network> element contains sub-elements that describe the clock distribution wires for the clock
architecture. There could be more than one <clock_network> element to describe separate types of distribution
wires. The high-level start tag for a clock network is as follows:

<clock_network name="string" num_inst="integer">
Required Attributes

* name — A unique string for reference.

* num_inst — which describes the number of parallel instances of the clock distribution
types described in the <clock_network> sub-elements.

Note: Many paramters used in the following clock architecture tags take an espression (expr) as an argument
simular to Grid Location Expressions. However, only a subset of special variables are suported: W (device
width) and H (device height).

The supported clock distribution types are <spine> and <rib>. Spines are used to describe vertical clock
distribution wires. Whereas, Ribs is used to describe a horizontal clock distribution wire. See Clock Archi-
tecture Example and accompanying figures Fig. 3.22 and Fig. 3.23 for example use of <spine> and <rib>
parameters.

<spine metal_layer="string" x="expr" starty="expr" endy="expr" repeatx="expr" repeaty=
Required Attributes

* metal_ layer — A referenced metal layer that sets the unit resistance and capac-
itance of the distribution wire over the length of the wire.

* starty — The start y grid location, of the wire which runs parallel to the y-axis
from starty and ends at endy, inclusive. Value can be relative to the device size.

* endy — The end of y grid location of the wire. Value can be relative to the device
size.

» x — The location of the spine with respect to the x-axis. Value can be relative to the
device size.

Optional Attributes

* repeatx — The horizontal repeat factor of the spine along the device. Value can
be relative to the device size.

104 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

* repeaty — The vertical repeat factor of the spine along the device. Value can be
relative to the device size.

The provided example clock network (Clock Architecture Example) defines two spines, and neither repeats as
each spans the entire height of the device and is locally at the horizontal midpoint of the device.

<rib metal_ layer="string" y="expr" startx="expr" endx="expr" repeatx="expr" repeaty="e
Required Attributes

* metal_ layer — A referenced metal layer that sets the unit resistance and capac-
itance of the distribution wire over the length of the wire.

* startx — The start x grid location, of the wire which runs parallel to the x-axis
from startx and ends at endx, inclusive. Value can be relative to the device size.

* endx — The end of x grid location of the wire. Value can be relative to the device
size.

» y — The location of the rib with respect to the y-axis. Value can be relative to the
device size.

Optional Attributes

* repeatx — The horizontal repeat factor of the rib along the device. Value can be
relative to the device size.

* repeaty — The vertical repeat factor of the rib along the device. Value can be
relative to the device size.

Along each spine and rib is a group of switch points. Switch points are used to describe drive or tap locations
along the clock distribution wire, and are enclosed in the relevant <rib> or <spine> tags:

<switch_point type="{drive | tap}" name="string" yoffset="expr" xoffset="expr" xinc="e
Required Attributes
. type —

— drive — Drive points are where the clock distribution wire can be driven by a
routing switch or buffer.

— tap — Tap points are where it can drive a routing switch or buffer to send a
signal to a different clock_network or logicblock.

* buffer — (Required only for drive points) A reference to a pre-defined routing
switch; specfied by <switch> tag, see Section Switches. This switch will be
used at the drive point. The clock architecture generator uses two of these buffers
to drive the two portions of this clock_network wire when it is split at the drive
point, see Figures Fig. 3.23 and Fig. 3.22.

Optional Attributes
* xoffset — (Only for rib network) Offset from the st artx of a rib network.

* yoffset — (Only for spine network) Offset from the starty of a spine net-
work.

* xinc — (Only for rib tap points) Descibes the repeat factor of a series of evenly
spaced tap points.

* yinc - (Only for spine t ap points) Descibes the repeat factor of a series of evenly
spaced tap points.

. Architecture Reference 105

Verilog-to-Routing Documentation, Release 8.1.0-dev

Note: A single <switch_point> specification may define a set of tap points (type="tap", with
either xincr or yincr), or a single drive point (type="drive")

Lastly the <clock_routing> element consists of a group of tap statements which separately describe the con-
nectivity between clock-related routing resources (pin or wire). The tap element and its attribute sare as follows:

<tap from="string" to="string" locationx="expr" locationy="expr" switch="string" fc_val="f.
Required Attributes

» from — The set of routing resources to make connections from. This can be either:

— clock_name.tap_points_name: A set of clock network tap-type switch-
points. The format is clock network name, followed by the tap points name and
delineated by a period (e.g. spinel.taps), or

— ROUTING: a special literal which references a connection from general inter-block
routing (at a location specified by locationx and locationy parameters).

Examples can be see in Clock Architecture Example.

* to — The set of routing resources to make connections fo. Can be a unique name or
special literal:

— clock_name.drive_point_name: A clock network drive-type switch-
point. The format is clock network name, followed by the drive point name and
delineated by a period (e.g. ribl.drive_point).

— CLOCK: a special literal which describes connections from clock network tap
points that supply the clock to clock pins on blocks at the tap locations; these
are clock inputs are already specified on blocks (top-level <pb_type>/<tile>)
in the VTR architecture file.

Examples can be see in Clock Architecture Example.
* switch — The routing switch (defined in <switches>) used for this connection.

e fc_val — A decimal value between 0 and 1 representing the connection block flexi-
bility between the connecting routing resources; a value of 0.5 for example means that
only 50% of the switches necessary to connect all the matching tap and drive points
would be implemented.

Optional Attributes

* locationx — (Required when using the special literal "ROUTING") The x grid loca-
tion of inter-block routing.

* locationy — (Required when using the special literal "ROUTING") The y grid loca-
tion of inter-block routing.

Note: A single <tap> statement may create multiple connections if either the of the from or t o correspond
to multiple routing resources. In such cases the £c_val can control how many connections are created.

Note: locationx and locationy describe an (x,y) grid loction where all the wires passing this location
source the source the clock network connection depending on the fc_val

For more information you may wish to consult [Abb19] which introduces the clock modeling language.

106 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

3.1.11 Power

Additional power options are specified within the <architecture> level <power> section.
See also:
See Power Estimation for full documentation on how to perform power estimation.

<local_interconnect C_wire="float" factor="float"/>
Required Attributes

¢ C_wire — The local interconnect capacitance in Farads/Meter.
Optional Attributes
¢ factor — The local interconnect scaling factor. Default: 0. 5.

<buffers logical_effort_factor="float"/>
Required Attributes

* logical_effort_factor — Default: 4.

3.1.12 Direct Inter-block Connections
The content within the <directlist> tag consists of a group of <direct> tags. The <direct> tag and its
contents are described below.

<direct name="string" from_pin="string" to_pin="string" x_offset="int" y offset="int" z_of:
Required Attributes

* name — is a unique alphanumeric string to name the connection.

* from_pin — pin of complex block that drives the connection.

* to_pin - pin of complex block that receives the connection.

e x_offset — The x location of the receiving CLB relative to the driving CLB.

* y_offset — The y location of the receiving CLB relative to the driving CLB.

* z_offset — The z location of the receiving CLB relative to the driving CLB.
Optional Attributes

* switch_name —[Optional, defaults to delay-less switch if not specified] The name of
the <switch> from <switchlist> to be used for this direct connection.

e from_side — The associated from_pin’s block size (must be one of left, right,
top, bottom or left unspecified)

* to_side — The associated to_pin’s block size (must be one of left, right, top,
bottom or left unspecified)
Describes a dedicated connection between two complex block pins that skips general interconnect. This is useful
for describing structures such as carry chains as well as adjacent neighbour connections.

The from_side and to_side options can usually be left unspecified. However they can be used to explicitly
control how directs to physically equivalent pins (which may appear on multiple sides) are handled.

Example: Consider a carry chain where the cout of each CLB drives the cin of the CLB immediately below
it, using the delay-less switch one would enter the following:

<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_
—offset="-1" z offset="0"/>

3.1. Architecture Reference 107

Verilog-to-Routing Documentation, Release 8.1.0-dev

3.1.13 Custom Switch Blocks

The content under the <switchblocklist> tag consists of one or more <switchblock> tags that are used to
specify connections between different segment types. An example is shown below:

<switchblocklist>
<switchblock name="my_switchblock" type="unidir">
<switchblock_location type="EVERYWHERE"/>
<switchfuncs>
<func type="1r" formula="t"/>
<func type="1t" formula="Ww-t"/>
<func type="1b" formula="W+t-1"/>
<func type="rt" formula="W+t-1"/>
<func type="br" formula="W-t-2"/>
<func type="bt" formula="t"/>
<func type="rl" formula="t"/>
<func type="tl" formula="W-t"/>
<func type="bl" formula="W+t-1"/>
<func type="tr" formula="W+t-1"/>
<func type="rb" formula="W-t-2"/>
<func type="tb" formula="t"/>
</switchfuncs>
<wireconn from_type="14" to_type="14" from_ switchpoint="0,1,2,3" to_
—switchpoint="0"/>
<wireconn from_type="18_global" to_type="18_global" from_switchpoint="0,4

to_switchpoint="0"/>
<wireconn from_type="18_global" to_type="14" from_ switchpoint="0,4"
to_switchpoint="0"/>
</switchblock>

<switchblock name="another switch_block" type="unidir">
another switch block description
</switchblock>
</switchblocklist>

This switch block format allows a user to specify mathematical permutation functions that describe how different types
of segments (defined in the architecture file under the <segment1ist> tag) will connect to each other at different
switch points. The concept of a switch point is illustrated below for a length-4 unidirectional wire heading in the “left”
direction. The switch point at the start of the wire is given an index of 0 and is incremented by 1 at each subsequent
switch block until the last switch point. The last switch point has an index of O because it is shared between the end of
the current segment and the start of the next one (similarly to how switch point 3 is shared by the two wire subsegments
on each side).

==<] switch block

== =<1 =] =1 =
switch point. 0 3 2 1 0

Fig. 3.24: Switch point diagram.

A collection of wire types and switch points defines a set of wires which will be connected to another set of wires
with the specified permutation functions (the ‘sets’ of wires are defined using the <wireconn> tags). This format

108 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

allows for an abstract but very flexible way of specifying different switch block patterns. For additional discussion on
interconnect modeling see [Pet16]. The full format is documented below.

Overall Notes:

1. The <sb type="pattern"> tag on a wire segment (described under <segmentlist>) is applied as a
mask on the patterns created by this switch block format; anywhere along a wire’s length where a switch block
has not been requested (set to O in this tag), no switches will be added.

2. You can specify multiple switchblock tags, and the switches described by the union of all those switch blocks
will be created.

<switchblock name="string" type="string">
Required Attributes

* name — A unique alphanumeric string

* type — unidir or bidir. A bidirectional switch block will implicitly mirror the
specified permutation functions — e.g. if a permutation function of type 1r (func-
tion used to connect wires from the left to the right side of a switch block) has been
specified, a reverse permutation function of type rl (right-to-left) is automatically
assumed. A unidirectional switch block makes no such implicit assumptions. The
type of switch block must match the directionality of the segments defined under the
<segmentlist> node.

<switchblock> is the top-level XML node used to describe connections between different segment types.

<switchblock_location type="string"/>
Required Attributes

* type — Can be one of the following strings:
— EVERYWHERE - at each switch block of the FPGA

— PERIMETER - at each perimeter switch block (x-directed and/or y-directed chan-
nel segments may terminate here)

— CORNER - only at the corner switch blocks (both x and y-directed channels termi-
nate here)

— FRINGE — same as PERIMETER but excludes corners

— CORE - everywhere but the perimeter
Sets the location on the FPGA where the connections described by this switch block will be instantiated.

<switchfuncs>
The switchfuncs XML node contains one or more entries that specify the permutation functions with which
different switch block sides should be connected, as described below.

<func type="string" formula="string"/>
Required Attributes

* type — Specifies which switch block sides this function should connect. With the
switch block sides being left, top, right and bottom, the allowed entries are one of {1t,
lr, 1b, tr, thb, tl, rb, rl, rt, bl, bt, br} where 1t means that the specified
permutation formula will be used to connect the left-top sides of the switch block.

Note: In a bidirectional architecture the reverse connection is implicit.

» formula — Specifies the mathematical permutation function that determines the pat-
tern with which the source/destination sets of wires (defined using the <wireconn> en-
tries) at the two switch block sides will be connected. For example, W—t specifies a

3.1. Architecture Reference 109

Verilog-to-Routing Documentation, Release 8.1.0-dev

connection where the t’th wire in the source set will connect to the W—t wire in the
destination set where W is the number of wires in the destination set and the formula is
implicitly treated as modulo W.

Special characters that can be used in a formula are:
— t — the index of a wire in the source set

— W — the number of wires in the destination set (which is not necessarily the total
number of wires in the channel)

The operators that can be used in the formula are:

Addition (+)

Subtraction (—)

Multiplication (x)
Division (/)

Brackets (and) are allowed and spaces are ignored.
Defined under the <switchfuncs> XML node, one or more <func. . .> entries is used to specify permu-
tation functions that connect different sides of a switch block.

<wireconn num_conns="expr" from_type="string, string, string, ..." to_type="string, string
Required Attributes

* num_conns — Specifies how many connections should be created between the
from_type/from_switchpoint set and the to_type/to_switchpoint set. The value of this
parameter is an expression which is evaluated when the switch block is constructed.

The expression can be a single number or formula using the variables:
— from - The number of switchblock edges equal to the ‘from’ set size.

This ensures that each element in the ‘from’ set is connected to an element
of the ‘to’ set. However it may leave some elements of the ‘to’ set either
multiply-connected or disconnected.

oz T "z

— to —The number of switchblock edges equal to the ‘to’ set size size.

110 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

This ensures that each element of the ‘to’ set is connected to precisely one
element of the ‘from’ set. However it may leave some elements of the
‘from’ set either multiply-connected or disconnected.

frerr o frerr o

Examples:

— min (from, to) — Creates number of switchblock edges equal to the minimum
of the ‘from’ and ‘to’ set sizes.

This ensures no element of the ‘from’ or ‘to’ sets is connected to multiple
elements in the opposing set. However it may leave some elements in the
larger set disconnected.

—— i

- .
& e i

L

.

L

R B @

frerr o frerr

— max (from, to) — Creates number of switchblock edges equal to the maximum
of the ‘from’ and ‘to’ set sizes.

This ensures all elements of the ‘from’ or ‘to’ sets are connected to at least

3.1. Architecture Reference 111

Verilog-to-Routing Documentation, Release 8.1.0-dev

one element in the opposing set. However some elements in the smaller
set may be multiply-connected.

frerr o frerr o

— 3*to—Creates number of switchblock edges equal to three times the ‘to” set sizes.

e from_type — A comma-separated list segment names that defines which segment
types will be a source of a connection. The segment names specified must match the
names of the segments defined under the <segmentlist> XML node. Required if
no <from> or <to> nodes are specified within the <wireconn>.

* to_type — A comma-separated list of segment names that defines which segment
types will be the destination of the connections specified. Each segment name must
match an entry in the <segment 1ist> XML node. Required if no <from> or <t o>
nodes are specified within the <wireconn>.

e from_switchpoint — A comma-separated list of integers that defines which switch-
points will be a source of a connection. Required if no <from> or <to> nodes are
specified within the <wireconn>.

* to_switchpoint — A comma-separated list of integers that defines which switch-
points will be the destination of the connections specified. Required if no <from> or
<to> nodes are specified within the <wireconn>.

Note: In a unidirectional architecture wires can only be driven at their start point so
to_switchpoint="0" is the only legal specification in this case.

Optional Attributes

* from_order — Specifies the order in which ““from_switchpoint™"s are selected when
creating edges.

— fixed - Switchpoints are selected in the order specified

This is useful to specify a preference for connecting to specific switch-
points. For example,

112 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

<wireconn num_conns="1xto" from_ type="L16" from_ _
—switchpoint="0,12,8,4" from_order="fixed" to_type=
~"L4" to_switchpoint="0"/>

specifies L4 wires should be connected first to L16 at switchpoint 0, then
at switchpoints 12, 8, and 4. This is primarily useful when we want to
ensure that some switchpoints are ‘used-up’ first.

— shuffled - Switchpoints are selected in a (randomly) shuffled order

This is useful to ensure a diverse set of switchpoints are used. For example,

<wireconn num_conns="1xto" from_ type="L4" from_
—switchpoint="0,1,2,3" from_order="shuffled" to_type=
—"L4" to_switchpoint="0"/>

specifies L4 wires should be connected to other L4 wires at any of switch-
points 0, 1, 2, or 3. Shuffling the switchpoints is useful if one of the sets
(e.g. from L4’s) is much larger than the other (e.g. to L4’s), and we wish
to ensure a variety of switchpoints from the larger set are used.

Default: shuffled

* to_order — Specifies the order in which ““to_switchpoint™s are selected when creat-
ing edges.

Note: See from_switchpoint_order for value descritpions.

<from type="string" switchpoint="int, int, int, ..."/>
Required Attributes
* type — The name of a segment specified in the <segmentlist>.

* switchpoint — A comma-separated list of integers that defines switchpoints.

Note: In a unidirectional architecture wires can only be driven at their start point
so to_switchpoint="0" is the only legal specification in this case.

Specifies a subset of source wire switchpoints.

This tag can be specified multiple times. The surrounding <wireconn>’s source set is the union of all
contained <from> tags.

<to type="string" switchpoint="int, int, int, ..."/>
Specifies a subset of destination wire switchpoints.

This tag can be specified multiple times. The surrounding <wireconn>’s destination set is the union of
all contained <to> tags.

See also:
<from> for attribute descriptions.

As an example, consider the following <wireconn> specification:

<wireconn num_conns_type="to"/>
<from type="L4" switchpoint="0,1,2,3"/>
<from type="L16" switchpoint="0,4,8,12"/>

(continues on next page)

. Architecture Reference 113

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<to type="L4" switchpoint="0/>
</wireconn>

This specifies that the ‘from’ set is the union of L4 switchpoints 0, 1, 2 and 3; and L16 switchpoints 0, 4, 8
and 12. The ‘to’ set is all L4 switchpoint 0’s. Note that since different switchpoints are selected from different
segment types it is not possible to specify this without using <from> sub-tags.

3.1.14 Architecture metadata

Architecture metadata enables tagging of architecture or routing graph information that exists outside of the normal
VPR flow (e.g. pack, place, route, etc). For example this could be used to enable bitstream generation by tagging
routing edges and pb_type features.

The metadata will not be used by the vpr executable, but can be leveraged by new tools using the libvpr library. These
new tools can access the metadata on the various VPR internal data structures.

To enable tagging of architecture structures with metadata, the <metadata> tag can be inserted under the following
XML tags:

s <pb_type>

e Any tag under <interconnect> (<direct>, <mux>, etc).

* <mode>

* Any grid location type (<perimeter>, <fill>, <corners>, <single>, <col>, <row>, <region>)
<metadata>
Specifies the root of a metadata block. Can have 0 or more <meta> Children.

<meta name="string" >
Required Attributes

* name — Key name of this metadata value.

Specifies a value within a metadata block. The name is a key for looking up the value contained within the <meta>
tag. Keys can be repeated, and will be stored in a vector in order of occurrence.

The value of the <meta> is the text in the block. Both the name and <meta> value will be stored as a string. XML
children are not supported in the <meta> tag.

Example of a metadata block with 2 keys:

<metadata>
<meta name="some_key">Some value</meta>
<meta name="other key!">Other value!</meta>
</metadata>

114 Chapter 3. FPGA Architecture Description

20
21

22

23

24

25

26

27

28

29

30

31

32

33

34

Verilog-to-Routing Documentation, Release 8.1.0-dev

3.2 Example Architecture Specification

The listing below is for an FPGA with I/O pads, soft logic blocks (called CLB), configurable memory hard blocks,
and fracturable multiplier hard blocks.

Notice that for the CLB, all the inputs are logically equivalent (line 157), and all the outputs are logically equivalent
(line 158). This is usually true for cluster-based logic blocks, as the local routing within the block usually provides
full (or near full) connectivity.

However, for other logic blocks, the inputs and all the outputs are not logically equivalent. For example, consider the
memory block (lines 311-316). Swapping inputs going into the data input port changes the logic of the block because
the data output order no longer matches the data input.

<!-— VPR Architecture Specification File ——>
<!—-— Quick XML Primer:

* Data is hierarchical and composed of tags (similar to HTML)

+ All tags must be of the form <foo>content</foo> OR <foo /> with the latter form,
—indicating no content. Don't forget the slash at the end.

* Inside a start tag you may specify attributes in the form key="value". Refer to,
—manual for the valid attributes for each element.

* Comments may be included anywhere in the document except inside a tag where it
—'s attribute list is defined.

* Comments may contain any characters except two dashes.
-—>
<!-- Architecture based off Stratix IV

Use closest ifar architecture: K06 N10 45nm fc 0.15 area-delay optimized, scale_
—to 40 nm using linear scaling

nl0k06104.fcl5.arealdelayl.cmos45nm.bptm.cmos45nm.xml

* because documentation sparser for soft logic (delays not in QUIP), harder to_
—track down, not worth our time considering the level of accuracy 1s approximate

+ delays multiplied by 40/45 to normalize for process difference between,

—stratix 4 and 45 nm technology (called full scaling)

Use delay numbers off Altera device handbook:

http://www.altera.com/literature/hb/stratix—iv/stx4_5vl.pdf
http://www.altera.com/literature/hb/stratix-iv/stx4_siv51004.pdf
http://www.altera.com/literature/hb/stratix—iv/stx4_siv51003.pdf
multipliers at 600 MHz, no detail on 9x9 vs 36x36
* datasheets unclear
* claims 4 18x18 independant multipliers, following test indicates that this_
—1s not the case:
created 4 18x18 mulitpliers, logiclocked them to a single DSP block, compile
result - 2 18x18 multipliers got packed together, the other 2 got ejected,
—out of the logiclock region without error
conclusion - just take the 600 MHz as 1is, and Quartus II logiclock hasn't_
—fixed the bug that I've seen it do to registers when I worked at Altera (ie. eject,
—without warning)

—-—>
<architecture>
<!-— ODIN II specific config -->
<models>
<model name="multiply">
<input_ports>

<port name="a" combinational_sink_ports="out"/>
<port name="b" combinational_sink_ports="out"/>
</input_ports>

(continues on next page)

3.2. Example Architecture Specification 115

35

37

38

40

41

42

43

44

45

46

4

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

7

78

79

81

82

84

85

87

88

90

91

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<output_ports>
<port name="out"/>
</output_ports>
</model>
<model name="single_port_ram">
<input_ports>
<port name="we" clock="clk"/>
<!-- control -->
<port name="addr" clock="clk"/>
<!-- address lines —-—>
<port name="data" clock="clk"/>

<!-- data lines can be broken down into smaller bit widths minimum size 1 —-->

<port name="clk" is_clock="1"/>

<!-— memories are often clocked ——>
</input_ports>
<output_ports>
<port name="out" clock="clk"/>
<!-— output can be broken down into smaller bit widths minimum size 1 ——>
</output_ports>
</model>
<model name="dual port_ram">
<input_ports>
<port name="wel" clock="clk"/>
<!-- write enable —-->
<port name="we2" clock="clk"/>
<!-— write enable ——>
<port name="addrl" clock="clk"/>
<!-- address lines ——>
<port name="addr2" clock="clk"/>
<!-—- address lines ——>
<port name="datal" clock="clk"/>
<!-- data lines can be broken down into smaller bit widths minimum size 1 —-->
<port name="data2" clock="clk"/>
<!-- data lines can be broken down into smaller bit widths minimum size 1 —-->
<port name="clk" is_clock="1"/>
<!-— memories are often clocked ——>
</input_ports>
<output_ports>
<port name="outl" clock="clk"/>
<!-- output can be broken down into smaller bit widths minimum size 1 ——>
<port name="out2" clock="clk"/>
<!-- output can be broken down into smaller bit widths minimum size 1 —-->
</output_ports>
</model>
</models>
<tiles>

<tile name="io" capacity="8">
<equivalent_sites>
<site pb_type="io" pin_mapping="direct"/>
</equivalent_sites>
<input name="outpad" num pins="1"/>
<output name="inpad" num_pins="1"/>
<eclock name="clock" num_pins="1"/>
<fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="custom">
<loc side="left">io.outpad io.inpad io.clock</loc>
<loc side="top">io.outpad io.inpad io.clock</loc>

(continues on next page)

116 Chapter 3. FPGA Architecture Description

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<loc side="right">io.outpad io.inpad io.clock</loc>
<loc side="bottom">io.outpad io.inpad io.clock</loc>
</pinlocations>
</tile>
<tile name="clb">
<equivalent_sites>
<site pb_type="clb" pin_mapping="direct"/>
</equivalent_sites>
<input name="I" num_pins="33" equivalent="full"/>
<output name="0" num_pins="10" equivalent="instance"/>
<eclock name="clk" num_pins="1"/>
<fe in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="spread"/>
</tile>
<tile name="mult_36" height="4">
<equivalent_sites>
<site pb_type="mult_36" pin_mapping="direct"/>
</equivalent_sites>
<input name="a" num_pins="36"/>
<input name="b" num_pins="36"/>
<output name="out" num_pins="72"/>
<pinlocations pattern="spread"/>
</tile>
<tile name="memory" height="6">
<equivalent_sites>
<site pb_type="memory" pin_mapping="direct"/>
</equivalent_sites>
<input name="addrl" num_pins="17"/>
<input name="addr2" num_pins="17"/>
<input name="data" num_pins="72"/>
<input name="wel" num_pins="1"/>
<input name="we2" num_pins="1"/>
<output name="out" num_pins="72"/>
<clock name="clk" num_pins="1"/>
<fec in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
<pinlocations pattern="spread"/>

</tile>
</tiles>
<!-- ODIN II specific config ends —->
<!-- Physical descriptions begin (area optimized for N8-K6-L4 —-->
<layout>

<auto_layout aspect_ratio="1.0">
<!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
<perimeter type="io" priority="100"/>
<corners type="EMPTY" priority="101"/>
<!--Fill with 'clb'——>
<fill type="clb" priority="10"/>
<!--Column of 'mult_36' with 'EMPTY' blocks wherever a 'mult_36' does not fit._
—Vertical offset by 1 for perimeter.-->
<col type="mult_36" startx="4" starty="1" repeatx="8" priority="20"/>
<col type="EMPTY" startx="4" repeatx="8" starty="1" priority="19"/>
<!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit._
—Vertical offset by 1 for perimeter.-->
<col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
<col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
</auto_layout>
</layout>

(continues on next page)

3.2. Example Architecture Specification 117

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194
195

196

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<device>
<sizing R_minW_nmos="6065.520020" R_minW_pmos="18138.500000"/>
<area grid_logic_tile_area="14813.392"/>
<!--area is for soft logic only-->
<chan_width_distr>
<x distr="uniform" peak="1.000000"/>
<y distr="uniform" peak="1.000000"/>
</chan_width_distr>
<switch_block type="wilton" fs="3"/>
<connection_block input_switch_name="ipin_cblock"/>
</device>
<switchlist>
<switch type="mux" name="0" R="0.000000" Cin="0.000000e+00" Cout="0.000000e+00"
—Tdel="6.837e-11" mux_trans_size="2.630740" buf_size="27.645901"/>
<!--switch ipin cblock resistance set to yeild for 4x minimum drive strength,
—buffer—-->
<switch type="mux" name="ipin_cblock" R="1516.380005" Cout="0." Cin="0.000000e+00
<" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
</switchlist>
<segmentlist>
<segment freg="1.000000" length="4" type="unidir" Rmetal="0.000000" Cmetal="0.
—000000e+00">
<mux name="0"/>
<sb type="pattern">1 1 1 1 1</sb>
<cb type="pattern">1 1 1 1</cb>
</segment>
</segmentlist>
<complexblocklist>
<!-— Capacity is a unique property of I/0Os, it is the maximum number of I/Os that_
—can be placed at the same (X,Y) location on the FPGA ——>
<pb_type name="io">
<input name="outpad" num_pins="1"/>
<output name="inpad" num_pins="1"/>
<clock name="clock" num_pins="1"/>
<!-— I0s can operate as either inputs or outputs —-->
<mode name="inpad">
<pb_type name="inpad" blif model=".input" num_pb="1">
<output name="inpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="inpad" input="inpad.inpad" output="io.inpad">
<delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/
>
</direct>
</interconnect>
</mode>
<mode name="outpad">
<pb_type name="outpad" blif_model=".output" num_pb="1">
<input name="outpad" num_pins="1"/>
</pb_type>
<interconnect>
<direct name="outpad" input="io.outpad" output="outpad.outpad">
<delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.
—outpad"/>
</direct>
</interconnect>
</mode>

(continues on next page)

118 Chapter 3. FPGA Architecture Description

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<!-— I0s go on the periphery of the FPGA, for consistency,
make it physically equivalent on all sides so that only one definition of_
—I/0s 1is needed.
If I do not make a physically equivalent definition, then I need to define,
—~4 different I/0s, one for each side of the FPGA

-——>
</pb_type>
<pb_type name="clb">
<input name="I" num_pins="33" equivalent="full"/><!-- NOTE: Logically,,
—Equivalent —-->
<output name="0" num_pins="10" equivalent="instance"/><!-- NOTE: Logically,,
—Equivalent ——>
<clock name="clk" num_pins="1"/>
<!-- Describe basic logic element —-->

<pb_type name="ble" num_pb="10">
<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<eclock name="clk" num_pins="1"/>
<pb_type name="soft_ logic" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<mode name="nl_lut6">
<pb_type name="1lut6" blif model=".names" num_pb="1" class="lut">
<input name="in" num_pins="6" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>

<!-—- LUT timing using delay matrix —->
<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
2.690e-10
2.690e-10
2.690e-10
2.690e-10
2.690e-10
2.690e-10
</delay_matrix>
</pb_type>
<interconnect>

<direct name="directl" input="soft_logic.in[5:0]" output="1ut6[0:0].
—in[5:0]"/>
<direct name="direct2" input="1lut6[0:0].out" output="soft_logic.out[0:0]
/>
</interconnect>
</mode>
</pb_type>
<pb_type name="ff" blif model=".latch" num pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="2.448e-10" port="ff.D" clock="clk"/>
<T_clock_to_Q max="7.732e-11" port="ff.Q" clock="clk"/>
</pb_type>
<interconnect>
<!-— Two ff, make ff available to only corresponding luts ——>
<direct name="directl" input="ble.in" output="soft_logic.in"/>
<direct name="direct2" input="soft_logic.out" output="ff.D"/>
<direct name="direct4" input="ble.clk" output="ff.clk"/>
<mux name="muxl" input="ff.Q soft_logic.out" output="ble.out"/>
</interconnect>

(continues on next page)

3.2. Example Architecture Specification 119

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279
280
281
282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

</pb_type>
<interconnect>
<complete name="crossbar" input="clb.I ble[9:0].out" output="ble[9:0].in">
<delay_constant max="8.044000e-11" in_port="clb.I" out_port="ble[9:0].in"/>
<delay_constant max="7.354000e-11" in port="ble[9:0].out" out_port=
—"ble[9:0].in"/>
</complete>
<complete name="clks" input="clb.clk" output="ble[9:0].clk"/>
<direct name="clbouts" input="ble[9:0].out" output="clb.0"/>
</interconnect>
</pb_type>
<!-—- This is the 36%36 uniform mult -->
<pb_type name="mult_ 36">
<input name="a" num_pins="36"/>
<input name="b" num_pins="36"/>
<output name="out" num_pins="72"/>
<mode name="two_divisible mult_18x18">
<pb_type name="divisible_mult_18x18" num_pb="2">
<input name="a" num_pins="18"/>
<input name="b" num_pins="18"/>
<output name="out" num_pins="36"/>
<mode name="two_mult_ 9x9">
<pb_type name="mult_9x9_slice" num_pb="2">
<input name="A_cfg" num_pins="9"/>
<input name="B_cfg" num_pins="9"/>
<output name="OUT_cfg" num_pins="18"/>
<pb_type name="mult_9x9" blif model=".subckt multiply" num_pb="1">
<input name="a" num_pins="9"/>
<input name="b" num_pins="9"/>
<output name="out" num_pins="18"/>
<delay_constant max="1.667e-9" in_port="mult_9x9.a" out_port="mult__
—9x9.out"/>
<delay_constant max="1.667e-9" in_port="mult_9x9.b" out_port="mult__
—9x9.out"/>
</pb_type>
<interconnect>
<direct name="a2a" input="mult_9x9_slice.A_cfg" output="mult_9x9.a"/>
<direct name="b2b" input="mult_9x9_slice.B_cfg" output="mult_9x9.b"/>
<direct name="out2out" input="mult_9x9.out" output="mult_9x9_slice.
—OQUT_cfg"/>
</interconnect>
</pb_type>
<interconnect>
<direct name="a2a" input="divisible_mult_18x18.a" output="mult_9x9_
—slice[1:0].A_cfg"/>
<direct name="b2b" input="divisible_mult_18x18.b" output="mult_9x9_
—slice[1:0].B_cfg"/>
<direct name="out2out" input="mult_9x9_slice[l:0].0UT_cfg" output=
—"divisible_mult_18x18.out"/>
</interconnect>
</mode>
<mode name="mult_18x18">
<pb_type name="mult_18x18_slice" num_pb="1">
<input name="A_cfg" num_pins="18"/>
<input name="B_cfg" num_pins="18"/>
<output name="OUT_cfg" num_pins="36"/>
<pb_type name="mult_18x18" blif model=".subckt multiply" num_pb="1">

(continues on next page)

120 Chapter 3. FPGA Architecture Description

298

299

300

301

302

303
304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<input name="a" num_pins="18"/>

<input name="b" num_pins="18"/>

<output name="out" num_pins="36"/>

<delay_constant max="1.667e-9" in_port="mult_ 18x18.a" out_port="mult__
—18x18.out"/>

<delay_constant max="1.667e-9" in_port="mult_ 18x18.b" out_port="mult_
—18x18.out"/>

</pb_type>
<interconnect>
<direct name="a2a" input="mult_18x18_slice.A_cfg" output="mult_18x18.a
" />
<direct name="b2b" input="mult_18x18_slice.B_cfg" output="mult_18x18.Db
="/>

<direct name="out2out" input="mult_18x18.out" output="mult_18x18_
—slice.OUT_cfg"/>
</interconnect>
</pb_type>
<interconnect>
<direct name="a2a" input="divisible_mult_18x18.a" output="mult_18x18_
—slice.A_cfg"/>
<direct name="b2b" input="divisible_mult_18x18.b" output="mult_18x18_
—slice.B_cfg"/>
<direct name="out2out" input="mult_18x18_slice.OUT_cfg" output=
—"divisible mult 18x18.out"/>
</interconnect>
</mode>
</pb_type>
<interconnect>
<direct name="a2a" input="mult_36.a" output="divisible_mult_18x18[1:0].a"/>
<direct name="b2b" input="mult_36.b" output="divisible_mult_18x18[1:0].b"/>
<direct name="out2out" input="divisible_mult_18x18[1:0].out" output="mult_
—36.out" />
</interconnect>
</mode>
<mode name="mult_36x36">
<pb_type name="mult_ 36x36_slice" num_pb="1">
<input name="A_cfg" num_pins="36"/>
<input name="B_cfg" num_pins="36"/>
<output name="OUT_cfg" num_pins="72"/>
<pb_type name="mult_36x36" blif model=".subckt multiply" num_pb="1">
<input name="a" num_pins="36"/>
<input name="b" num_pins="36"/>
<output name="out" num_pins="72"/>
<delay_constant max="1.667e-9" in_port="mult_36x36.a" out_port="mult__
—36x36.0out"/>
<delay_constant max="1.667e-9" in_port="mult_36x36.b" out_port="mult__
—36x36.0ut"/>
</pb_type>
<interconnect>
<direct name="a2a" input="mult_36x36_slice.A_cfg" output="mult_36x36.a"/>
<direct name="b2b" input="mult_36x36_slice.B_cfg" output="mult_36x36.b"/>
<direct name="out2out" input="mult_36x36.out" output="mult_36x36_slice.
—OUT_cfg"/>
</interconnect>
</pb_type>
<interconnect>
<direct name="a2a" input="mult_36.a" output="mult_36x36_slice.A_cfg"/>

(continues on next page)

3.2. Example Architecture Specification 121

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<direct name="b2b" input="mult_36.b" output="mult_36x36_slice.B_cfg"/>
<direct name="out2out" input="mult_36x36_slice.OUT_cfg" output="mult_36.out
—"/>
</interconnect>
</mode>
<fc_in type="frac">0.15</fc_in>
<fc_out type="frac">0.10</£fc_out>

</pb_type>
<!-- Memory based off Stratix IV 144K memory. Setup time set to match flip-flop,
—setup time at 45 nm. Clock to g based off 144K max MHz —-->

<pb_type name="memory">

<input name="addrl" num pins="17"/>

<input name="addr2" num_pins="17"/>

<input name="data" num_pins="72"/>

<input name="wel" num_pins="1"/>

<input name="we2" num_pins="1"/>

<output name="out" num_pins="72"/>

<eclock name="clk" num_pins="1"/>

<mode name="mem_2048x72_sp">

<pb_type name="mem 2048x72_sp" blif model=".subckt single_port_ram" class=
—"memory" num_pb="1">

<input name="addr" num_pins="11" port_class="address"/>
<input name="data" num_pins="72" port_class="data_in"/>
<input name="we" num_pins="1" port_class="write_en"/>
<output name="out" num_pins="72" port_class="data_out"/>
<eclock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="2.448e-10" port="mem_2048x72_sp.addr" clock="clk"/>
<T_setup value="2.448e-10" port="mem_2048x72_sp.data" clock="clk"/>
<T_setup value="2.448e-10" port="mem_2048x72_sp.we" clock="clk"/>
<T_clock_to_Q max="1.852e-9" port="mem_2048x72_sp.out" clock="clk"/>

</pb_type>
<interconnect>
<direct name="addressl" input="memory.addrl[10:0]" output="mem_ 2048x72_sp.
—addr" />
<direct name="datal" input="memory.data[71:0]" output="mem_2048x72_sp.data"/
>
<direct name="writeenl" input="memory.wel" output="mem_2048x72_sp.we"/>
<direct name="dataoutl" input="mem_2048x72_sp.out" output="memory.out[71:0]
="/>
<direct name="clk" input="memory.clk" output="mem_2048x72_sp.clk"/>
</interconnect>
</mode>

<mode name="mem_4096x36_dp">
<pb_type name="mem_4096x36_dp" blif model=".subckt dual_port_ram" class=
—"memory" num_pb="1">
<input name="addrl" num_pins="12" port_class="addressl"/>
<input name="addr2" num _pins="12" port_class="address2"/>
<input name="datal" num_pins="36" port_class="data_inl"/>
<input name="datal2" num_pins="36" port_class="data_in2"/>
<input name="wel" num_pins="1" port_class="write_enl"/>
<input name="we2" num_pins="1" port_class="write_en2"/>
<output name="outl" num_pins="36" port_class="data_outl"/>
<output name="out2" num_pins="36" port_class="data_out2"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="2.448e-10" port="mem_4096x36_dp.addrl" clock="clk"/>
<T_setup value="2.448e-10" port="mem_4096x36_dp.datal" clock="clk"/>
<T_setup value="2.448e-10" port="mem_4096x36_dp.wel" clock="clk"/>

(continues on next page)

122 Chapter 3. FPGA Architecture Description

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<T_setup value="2.448e-10" port="mem_4096x36_dp.addr2" clock="clk"/>
<T_setup value="2.448e-10" port="mem_4096x36_dp.data2" clock="clk"/>
<T_setup value="2.448e-10" port="mem 4096x36_dp.we2" clock="clk"/>
<T_clock_to_Q max="1.852e-9" port="mem_4096x36_dp.outl" clock="clk"/>
<T_clock_to_Q max="1.852e-9" port="mem_4096x36_dp.out2" clock="clk"/>
</pb_type>
<interconnect>
<direct name="addressl" input="memory.addrl[11:0]" output="mem_ 4096x36_dp.
—addrl"/>
<direct name="address2" input="memory.addr2[11:0]" output="mem_4096x36_dp.
—addr2"/>
<direct name="datal" input="memory.data[35:0]" output="mem_4096x36_dp.datal

="/>
<direct name="datal2" input="memory.data[71:36]" output="mem_4096x36_dp.data2
="/>
<direct name="writeenl" input="memory.wel" output="mem_4096x36_dp.wel"/>
<direct name="writeen2" input="memory.we2" output="mem_4096x36_dp.we2"/>
<direct name="dataoutl" input="mem_4096x36_dp.outl" output="memory.out[35:0]
/>

<direct name="dataout2" input="mem_4096x36_dp.out2" output="memory.
—out [71:36]1"/>
<direct name="clk" input="memory.clk" output="mem_4096x36_dp.clk"/>
</interconnect>
</mode>
<mode name="mem_4096x36_sp">
<pb_type name="mem_4096x36_sp" blif model=".subckt single_port_ram" class=
—"memory" num_pb="1">
<input name="addr" num_pins="12" port_class="address"/>
<input name="data" num_pins="36" port_class="data_in"/>
<input name="we" num_pins="1" port_class="write_en"/>
<output name="out" num_pins="36" port_class="data_out"/>
<eclock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="2.448e-10" port="mem_4096x36_sp.addr" clock="clk"/>
<T_setup value="2.448e-10" port="mem_4096x36_sp.data" clock="clk"/>
<T_setup value="2.448e-10" port="mem_4096x36_sp.we" clock="clk"/>
<T_clock_to_Q max="1.852e-9" port="mem_4096x36_sp.out" clock="clk"/>

</pb_type>
<interconnect>
<direct name="addressl" input="memory.addrl[11:0]" output="mem_4096x36_sp.
—addr"/>
<direct name="datal" input="memory.data[35:0]" output="mem_4096x36_sp.data"/
>
<direct name="writeenl" input="memory.wel" output="mem_4096x36_sp.we"/>
<direct name="dataoutl" input="mem_4096x36_sp.out" output="memory.out[35:0]
="/>
<direct name="clk" input="memory.clk" output="mem_4096x36_sp.clk"/>
</interconnect>
</mode>

<mode name="mem_9182x18_dp">
<pb_type name="mem_9182x18_dp" blif_ model=".subckt dual_port_ram" class=
—"memory" num_pb="1">
<input name="addrl" num_pins="13" port_class="addressl"/>
<input name="addr2" num _pins="13" port_class="address2"/>
<input name="datal" num_pins="18" port_class="data_inl"/>
<input name="datal2" num_pins="18" port_class="data_in2"/>
<input name="wel" num_pins="1" port_class="write_enl"/>
<input name="we2" num_pins="1" port_class="write_en2"/>

(continues on next page)

3.2. Example Architecture Specification 123

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<output name="outl" num_pins="18" port_class="data_outl"/>
<output name="out2" num_pins="18" port_class="data_out2"/>
<eclock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="2.448e-10" port="mem_9182x18_dp.addrl" clock="clk"/>
<T_setup value="2.448e-10" port="mem_9182x18_dp.datal" clock="clk"/>
<T_setup value="2.448e-10" port="mem 9182x18_dp.wel" clock="clk"/>
<T_setup value="2.448e-10" port="mem_9182x18_dp.addr2" clock="clk"/>
<T_setup value="2.448e-10" port="mem_9182x18_dp.data2" clock="clk"/>
<T_setup value="2.448e-10" port="mem 9182x18_dp.we2" clock="clk"/>
<T_clock_to_Q max="1.852e-9" port="mem_9182x18_dp.outl" clock="clk"/>
<T_clock_to_Q max="1.852e-9" port="mem_9182x18_dp.out2" clock="clk"/>
</pb_type>
<interconnect>
<direct name="addressl" input="memory.addrl[12:0]" output="mem_ 9182x18_dp.
—addrl"/>
<direct name="address2" input="memory.addr2[12:0]" output="mem_ 9182x18_dp.
—addr2"/>
<direct name="datal" input="memory.data[l7:0]" output="mem_ 9182x18_dp.datal

="/>
<direct name="datal2" input="memory.data[35:18]" output="mem_9182x18_dp.data2
="/>
<direct name="writeenl" input="memory.wel" output="mem_9182x18_dp.wel"/>
<direct name="writeen2" input="memory.we2" output="mem_9182x18_dp.we2"/>
<direct name="dataoutl" input="mem_9182x18_dp.outl" output="memory.out[17:0]
="/>

<direct name="dataout2" input="mem_9182x18_dp.out2" output="memory.
—out[35:18]1"/>
<direct name="clk" input="memory.clk" output="mem_09182x18_dp.clk"/>
</interconnect>
</mode>
<mode name="mem_9182x18_sp">
<pb_type name="mem_ 9182x18_sp" blif model=".subckt single_port_ram" class=
—"memory" num_pb="1">
<input name="addr" num_pins="13" port_class="address"/>
<input name="data" num_pins="18" port_class="data_in"/>
<input name="we" num_pins="1" port_class="write_en"/>
<output name="out" num_pins="18" port_class="data_out"/>
<eclock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="2.448e-10" port="mem_9182x18_sp.addr" clock="clk"/>
<T_setup value="2.448e-10" port="mem_9182x18_sp.data" clock="clk"/>
<T_setup value="2.448e-10" port="mem_9182x18_sp.we" clock="clk"/>
<T_clock_to_Q max="1.852e-9" port="mem_9182x18_sp.out" clock="clk"/>

</pb_type>
<interconnect>
<direct name="addressl" input="memory.addrl[12:0]" output="mem_ 9182x18_sp.
—addr"/>
<direct name="datal" input="memory.data[l7:0]" output="mem_9182x18_sp.data"/
>
<direct name="writeenl" input="memory.wel" output="mem_9182x18_sp.we"/>
<direct name="dataoutl" input="mem_9182x18_sp.out" output="memory.out[17:0]
="/>
<direct name="clk" input="memory.clk" output="mem_9182x18_sp.clk"/>
</interconnect>
</mode>

<mode name="mem_18194x9_dp">
<pb_type name="mem_18194x9_dp" blif model=".subckt dual_port_ram" class=
—"memory" num_pb="1">

(continues on next page)

124 Chapter 3. FPGA Architecture Description

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<input n
<input n
<input n
<input n
<input n
<input n
<output

<output

<clock n
<T_setup
<T_setup
<T_setup
<T_setup
<T_setup
<T_setup

ame="addrl" num_pins="14" port_class="addressl"/>
ame="addr2" num_pins="14" port_class="address2"/>
ame="datal" num_pins="9" port_class="data_inl"/>

ame="data2" num_pins="9" port_class="data_in2"/>

ame="wel" num_pins="1" port_class="write_enl"/>

ame="we2" num_pins="1" port_class="write_en2"/>

name="outl" num_pins="9" port_class="data_outl"/>
name="out2" num_pins="9" port_class="data_out2"/>

ame="clk" num_pins="1" port_class="clock"/>
value="2.448e-10" port="mem_18194x9_dp.addrl" clock="clk"/>
value="2.448e-10" port="mem_18194x9_dp.datal" clock="clk"/>
value="2.448e-10" port="mem_18194x9_dp.wel" clock="clk"/>
value="2.448e-10" port="mem_18194x9_dp.addr2" clock="clk"/>
value="2.448e-10" port="mem_18194x9_dp.data2" clock="clk"/>
value="2.448e-10" port="mem_18194x9_dp.we2" clock="clk"/>

<T_clock_to_Q max="1.852e-9" port="mem_18194x9_dp.outl" clock="clk"/>
<T_clock_to_Q max="1.852e-9" port="mem_18194x9_dp.out2" clock="clk"/>

</pb_type>
<interconnect>
<direct name="addressl" input="memory.addrl[13:0]" output="mem_ 18194x9_dp.
—addrl"/>
<direct name="address2" input="memory.addr2[13:0]" output="mem_ 18194x9_dp.
—addr2"/>
<direct name="datal" input="memory.data[8:0]" output="mem_18194x9_dp.datal"/
>
<direct name="datal2" input="memory.data[l7:9]" output="mem_18194x9_dp.data2
="/>
<direct name="writeenl" input="memory.wel" output="mem_18194x9_dp.wel"/>
<direct name="writeen2" input="memory.we2" output="mem_18194x9_dp.we2"/>
<direct name="dataoutl" input="mem_18194x9_dp.outl" output="memory.out[8:0]
—"/>
<direct name="dataout2" input="mem_18194x9_dp.out2" output="memory.out[17:9]
="/>
<direct name="clk" input="memory.clk" output="mem_18194x9_dp.clk"/>
</interconnect>
</mode>
<mode name="mem_18194x9_sp">
<pb_type name="mem_ 18194x9_sp" blif model=".subckt single_port_ram" class=
—"memory" num_pb="1">
<input name="addr" num_pins="14" port_class="address"/>
<input name="data" num_pins="9" port_class="data_in"/>
<input name="we" num_pins="1" port_class="write_en"/>
<output name="out" num_pins="9" port_class="data_out"/>

<eclock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="2.448e-10" port="mem_18194x9_sp.addr" clock="clk"/>
<T_setup value="2.448e-10" port="mem_18194x9_sp.data" clock="clk"/>
<T_setup value="2.448e-10" port="mem_18194x9_sp.we" clock="clk"/>
<T_clock_to_Q max="1.852e-9" port="mem_18194x9_sp.out" clock="clk"/>
</pb_type>
<interconnect>
<direct name="addressl" input="memory.addrl[13:0]" output="mem_ 18194x9_sp.
—addr"/>
<direct name="datal" input="memory.data[8:0]" output="mem 18194x9_sp.data"/>
<direct name="writeenl" input="memory.wel" output="mem 18194x9 sp.we"/>
<direct name="dataoutl" input="mem_18194x9_sp.out" output="memory.out[8:0]"/
>
<direct name="clk" input="memory.clk" output="mem_18194x9_sp.clk"/>

(continues on next page)

3.2. Example Architecture Specification 125

533

534

535

536

537

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

</interconnect>
</mode>
</pb_type>
</complexblocklist>
</architecture>

126

Chapter 3. FPGA Architecture Description

CHAPTER
FOUR

VPR

VPR (Versatile Place and Route) is an open source academic CAD tool designed for the exploration of new FPGA
architectures and CAD algorithms, at the packing, placement and routing phases of the CAD flow [BRO7b][LKJ+09].
Since its public introduction, VPR has been used extensively in many academic projects partly because it is robust,
well documented, easy-to-use, and can flexibly target a range of architectures.

VPR takes, as input, a description of an FPGA architecture along with a technology-mapped user circuit. It then
performs packing, placement, and routing to map the circuit onto the FPGA. The output of VPR includes the FPGA
configuration needed to implement the circuit and statistics about the final mapped design (eg. critical path delay, area,
etc).

Placement (carry chains highlighted) | Critical Path

Logical Connections Routing Utilization

Motivation

The study of FPGA CAD and architecture can be a challenging process partly because of the difficulty in conducting
high quality experiments. A quality CAD/architecture experiment requires realistic benchmarks, accurate architectural
models, and robust CAD tools that can appropriately map the benchmark to the particular architecture in question. This
is a lot of work. Fortunately, this work can be made easier if open source tools are available as a starting point.

The purpose of VPR is to make the packing, placement, and routing stages of the FPGA CAD flow robust and flexible
so that it is easier for researchers to investigate future FPGAs.

4.1 Basic flow

The Place and Route process in VPR consists of several steps:
* Packing (combinines primitives into complex blocks)
* Placment (places complex blocks within the FPGA grid)
* Routing (determines interconnections between blocks)
* Analysis (analyzes the implementation)

Each of these steps provides additional configuration options that can be used to customize the whole process.

127

Verilog-to-Routing Documentation, Release 8.1.0-dev

4.1.1 Packing

The packing algorithm tries to combine primitive netlist blocks (e.g. LUTs, FFs) into groups, called Complex Blocks
(as specified in the FPGA architecture file). The results from the packing process are written into a .net file. It
contains a description of complex blocks with their inputs, outputs, used clocks and relations to other signals. It can
be useful in analyzing how VPR packs primitives together.

A detailed description of the . net file format can be found in the Packed Netlist Format (.net) section.

4.1.2 Placement

This step assigns a location to the Complex Blocks (produced by packing) with the FPGA grid, while optimizing for
wirelength and timing. The output from this step is written to the . place file, which contains the physical location
of the blocks from the . net file.

The file has the following format:

block_name X y subblock_number

where x and y are positions in the VPR grid and block_name comes from the . net file.

Example of a placing file:

Netlist_File: top.net Netlist_ID:
—SHA256:ce5217d251e04301759%9ee5a8£55£67c642de435b6c573148b67c19c5e054c1£9
Array size: 149 x 158 logic blocks

#block name x vy subblk block number

____________ - L
Sauto$alumacc.cc:474:replace_alu$24.slice[l].carryd_full 53 32 0 #0
Sauto$alumacc.cc:474:replace_alu$24.slice[2] .carry4_full 53 31 0 #1
Sauto$alumacc.cc:474:replace_alu$24.slice[3].carry4d_full 53 30 0 #2
Sauto$alumacc.cc:474:replace_alu$24.slice[4].carryd_full 53 29 0 #3
Sauto$alumacc.cc:474:replace_alu$24.slice[5] .carry4_full 53 28 0 #4
Sauto$alumacc.cc:474:replace_alu$24.slice[6] .carryd_part 53 27 0 #5
Sauto$alumacc.cc:474:replace_alu$24.slice[0].carryd_1lst_full 53 33 0,
out :LD7 9 5 0 #7

clk 42 26 0 #8

$false 35 26 0 #9

A detailed description of the .place file format can be found in the Placement File Format (.place) section.

4.1.3 Routing

This step determines how to connect the placed Complex Blocks together, according to the netlist connectivity and
the routing resources of the FPGA chip. The router uses a Routing Resource (RR) Graph [BRM99] to represent the
FPGA’s available routing resources. The RR graph can be created in two ways:

1. Automatically generated by VPR from the FPGA architecture description [BROO], or
2. Loaded from an external RR graph file.

The output of routing is written into a . route file. The file describes each connection from input to its output
through different routing resources of the FPGA. Each net starts with a SOURCE node and ends in a SINK node,
potentially passing through complex block input/output pins (IP IN/OP IN nodes) and horizontal/vertical routing wires

128 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

(CHANX/CHANY nodes). The pair of numbers in round brackets provides information on the (x, y) resource location
on the VPR grid. The additional field provides information about the specific node.

An example routing file could look as follows:

Placement_File: top.place Placement_ID:
—SHA256:88d45f0b£f7999e3£9331cdfd3497d0028be58ffa324a019254c2ae7b4£f5bfa7a
Array size: 149 x 158 logic blocks.

Routing:

Net 0 (counter([4])

Node: 203972 SOURCE (53,32) Class: 40 Switch: 0

Node: 204095 OPIN (53,32) Pin: 40 BLK-TL-SLICEL.CQ[0] Switch: 189
Node: 1027363 CHANY (52,32) Track: 165 Switch: 7

Node: 601704 CHANY (52,32) Track: 240 Switch: 161

Node: 955959 CHANY (52,32) to (52,33) Track: 90 Switch: 130
Node: 955968 CHANY (52,32) Track: 238 Switch: 128

Node: 955976 CHANY (52,32) Track: 230 Switch: 131

Node: 601648 CHANY (52,32) Track: 268 Switch: 7

Node: 1027319 CHANY (52,32) Track: 191 Switch: 183

Node: 203982 IPIN (53,32) Pin: 1 BLK-TL-SLICEL.A2[0] Switch: O
Node: 203933 SINK (53,32) Class: 1 Switch: -1

Net 1 ($Sauto$alumacc.cc:474:replace_alu$24.0[6])

A detailed description of the . route file format can be found in the Routing File Format (.route) section.

4.1.4 Analysis

This step analyzes the resulting implementation, producing information about:
* Resource usage (e.g. block types, wiring)
* Timing (e.g. critical path delays and timing paths)
* Power (e.g. total power used, power broken down by blocks)

Note that VPR’s analysis can be used independently of VPR’s optimization stages, so long as the appropriate .net/.
place/.route files are available.

4.2 Command-line Options

Placement | Critical Path | Logical Connections | Routing Utilization

4.2. Command-line Options 129

Verilog-to-Routing Documentation, Release 8.1.0-dev

4.2.1 Basic Usage

At a minimum VPR requires two command-line arguments:

vpr architecture circuit

where:

architecture
is an FPGA architecture description file

circuit
is the technology mapped netlist in BLIF format to be implemented

VPR will then pack, place, and route the circuit onto the specified architecture.

By default VPR will perform a binary search routing to find the minimum channel width required to route the circuit.

4.2.2 Detailed Command-line Options

VPR has a lot of options. The options most people will be interested in are:
e ——route_chan_width (route at a fixed channel width), and
e ——disp (turn on/off graphics).

In general for the other options the defaults are fine, and only people looking at how different CAD algorithms perform
will try many of them. To understand what the more esoteric placer and router options actually do, see [BRM99] or
download [BR96a][BRO6b][BRO7b][MBROO0] from the author’s web page.

In the following text, values in angle brackets e.g. <int> <float> <string> <file>, should be replaced by the
appropriate number, string, or file path. Values in curly braces separated by vertical bars, e.g. {on | off}, indicate
all the permissible choices for an option.

Stage Options
VPR runs all stages of (pack, place, route, and analysis) if none of ——pack, ——place, ——routeor ——analysis
are specified.

—--pack
Run packing stage

Default: of £

—--place
Run placement stage

Default: of £

——route
Run routing stage This also implies —analysis if routing was successful.

Default: of £

——analysis
Run final analysis stage (e.g. timing, power).

Default: of £

130 Chapter 4. VPR

http://www.eecg.toronto.edu/~vaughn

Verilog-to-Routing Documentation, Release 8.1.0-dev

Graphics Options

—--disp {on | off}
Controls whether VPR'’s interactive graphics are enabled. Graphics are very useful for inspecting and debugging
the FPGA architecture and/or circuit implementation.

Default: of £

——auto <int>
Can be 0, 1, or 2. This sets how often you must click Proceed to continue execution after viewing the graphics.
The higher the number, the more infrequently the program will pause.

Default: 1

——-save_graphics {on | off}
If set to on, this option will save an image of the final placement and the final routing created by vpr to pdf files
on disk, with no need for any user interaction. The files are named vpr_placement.pdf and vpr_routing.pdf.

Default: of £

——graphics_commands <string>
A set of semi-colon seperated graphics commands.
 save_graphics <file> Saves graphics to the specified file (.png/.pdf/ .svg). If <file> contains {1}, it will
be replaced with an integer which increments each time graphics is invoked.
* set_macros <int> Sets the placement macro drawing state
* set_nets <int> Sets the net drawing state
 set_cpd <int> Sets the criticla path delay drawing state
* set_routing util <int> Sets the routing utilization drawing state
* set_clip_routing_util <int> Sets whether routing utilization values are clipped to [0., 1.]. Useful when
a consistent scale is needed across images
¢ set_draw_block_outlines <int> Sets whether blocks have an outline drawn around them
» set_draw_block_text <int> Sets whether blocks have label text drawn on them
* set_draw_block_internals <int> Sets the level to which block internals are drawn
* set_draw_net_max_fanout <int> Sets the maximum fanout for nets to be drawn (if fanout is beyond
this value the net will not be drawn)
* set_congestion <int> Sets the routing congestion drawing state
* exit <int> Exits VPR with specified exit code
Example:

save_graphics place.png; \

set_nets 1; save_graphics netsl.png;\

set_nets 2; save_graphics nets2.png; set_nets 0;\
set_cpd 1; save_graphics cpdl.png; \

set_cpd 3; save_graphics cpd3.png; set_cpd 0; \
set_routing_util 5; save_graphics routing_util5.png; \
set_routing_util 0; \

set_congestion 1; save_graphics congestionl.png;

The above toggles various graphics settings (e.g. drawing nets, drawing critical path) and then saves the results
to .png files.

Note that drawing state is reset to its previous state after these commands are invoked.

Like the interactive graphics :option’<—disp>" option, the ——aut o option controls how often the commands
specified with this option are invoked.

4.2. Command-line Options 131

Verilog-to-Routing Documentation, Release 8.1.0-dev

General Options
-h, —--help
Display help message then exit.

——-version
Display version information then exit.

——device <string>
Specifies which device layout/floorplan to use from the architecture file.

auto uses the smallest device satisfying the circuit’s resource requirements. Other values are assumed to be
the names of device layouts defined in the FPGA Grid Layout section of the architecture file.

Note: If the architecture contains both <auto_layout> and <fixed_layout> specifications, specifying
an auto device will use the <auto_layout>.

Default: auto

-j, —--num_workers <int>
Controls how many parallel workers VPR may use:
* 1 implies VPR will execute serially,
* >1 implies VPR may execute in parallel with up to the specified concurency
* 0 implies VPR may execute with up to the maximum concurrency supported by the host machine
If this option is not specified it may be set from the VPR_NUM_WORKERS environment variable; otherwise the
default is used.

Note: To compile VPR to allow the usage of parallel workers, 1ibtbb—dev must be installed in the system.

Default: 1

——timing analysis {on | off}
Turn VPR timing analysis off. If it is off, you don’t have to specify the various timing analysis parameters in the
architecture file.

Default: on

——echo_file {on | off}
Generates echo files of key internal data structures. These files are generally used for debugging vpr, and
typically end in . echo

Default: of £

——verify file digests {on | off}
Checks that any intermediate files loaded (e.g. previous packing/placement/routing) are consistent with the
current netlist/architecture.

If set to on will error if any files in the upstream dependancy have been modified. If set to of £ will warn if any
files in the upstream dependancy have been modified.

Default: on

—-—target_utilization <float>
Sets the target device utilization. This corresponds to the maximum target fraction of device grid-tiles to be
used. A value of 1.0 means the smallest device (which fits the circuit) will be used.

Default: 1.0

132 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

——constant_net_method {global | route}
Specifies how constant nets (i.e. those driven to a constant value) are handled:
* global: Treat constant nets as globals (not routed)

* route: Treat constant nets as normal nets (routed)
Default: global

——clock_modeling {ideal | route | dedicated_network}
Specifies how clock nets are handled:
* ideal: Treat clock pins as ideal (i.e. no routing delays on clocks)

* route: Treat clock nets as normal nets (i.e. routed using inter-block routing)
* dedicated_network: Use the architectures dedicated clock network (experimental)
Default: ideal

——two_stage_clock_routing {on | off}
Routes clock nets in two stages using a dedicated clock network.
* First stage: From the net source (e.g. an I/O pin) to a dedicated clock network root (e.g. center of chip)
* Second stage: From the clock network root to net sinks.
Note this option only works when specifying a clock architecture, see Clock Architecture Format; it does not
work when reading a routing resource graph (i.e. ——read_rr_graph).
Default: of £

—-—exit_before_pack {on | off}
Causes VPR to exit before packing starts (useful for statistics collection).

Default: of £

——strict_checks {on, off}
Controls whether VPR enforces some consistency checks strictly (as errors) or treats them as warnings.

Usually these checks indicate an issue with either the targetted architecture, or consistency issues with VPR’s
internal data structures/algorithms (possibly harming optimization quality). In specific circumstances on specific
architectures these checks may be too restrictive and can be turned off.

Warning: Exercise extreme caution when turning this option off — be sure you completely understand why
the issue is being flagged, and why it is OK to treat as a warning instead of an error.

Default: on

Filename Options

VPR by default appends .blif, .net, .place, and .route to the circuit name provided by the user, and looks for an SDC
file in the working directory with the same name as the circuit. Use the options below to override this default naming
behaviour.

——circuit_file <file>
Path to technology mapped user circuit in BLIF format.

Note: If specified the circuit positional argument is treated as the circuit name.

See also:

—-—circuit_format

4.2. Command-line Options 133

Verilog-to-Routing Documentation, Release 8.1.0-dev

——circuit_format {auto | blif | eblif}
File format of the input technology mapped user circuit.
* auto: File format inferred from file extension (e.g. .blif or .eblif)
e blif: Strict structural BLIF
e eblif: Structural BLIF with extensions
Default: auto

——net_file <file>
Path to packed user circuit in net format.

Default: circuit.net

——place_file <file>
Path to final placement file.

Default: circuit.place

—-route_file <file>
Path to final routing file.

Default: circuit.route

——sdc_file <file>
Path to SDC timing constraints file.

If no SDC file is found default timing constraints will be used.
Default: circuit.sdc

--write_rr_graph <file>
Writes out the routing resource graph generated at the last stage of VPR into RR Graph XML format

<file> describes the filename for the generated routing resource graph. The output can be read into VPR using
—-—read_rr._graph

—--read_rr_graph <file>
Reads in the routing resource graph named <file> loads it for use during the placement and routing stages.

The routing resource graph overthrows all the architecture definitions regarding switches, nodes, and edges.
Other information such as grid information, block types, and segment information are matched with the archi-
tecture file to ensure accuracy.

This file should be in XML format and can be easily obtained through ——write rr graph
See also:
Routing Resource XML File.

—-outfile_prefix <string>
Prefix for output files

Netlist Options

By default VPR will remove buffer LUTs, and iteratively sweep the netlist to remove unused primary inputs/outputs,
nets and blocks, until nothing else can be removed.

——absorb_buffer luts {on | off}
Controls whether LUTs programmed as wires (i.e. implementing logical identity) should be absorbed into the
downstream logic.

Usually buffer LUTS are introduced in BLIF circuits by upstream tools in order to rename signals (like assign
statements in Verilog). Absorbing these buffers reduces the number of LUTSs required to implement the circuit.

134 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Ocassionally buffer LUTs are inserted for other purposes, and this option can be used to preserve them. Dis-
abling buffer absorption can also improve the matching between the input and post-synthesis netlist/SDF.

Default: on

——const_gen_inference {none | comb | comb_seqg}
Controls how constant generators are inferred/detected in the input circuit. Constant generators and the signals
they drive are not considered during timing analysis.
* none: No constant generator inference will occur. Any signals which are actually constants will be
treated as non-constants.
» comb: VPR will infer constant generators from combinational blocks with no non-constant inputs (always
safe).
e comb_seq: VPR will infer constant generators from combinational and sequential blocks with only
constant inputs (usually safe).

Note: In rare circumstances comb_seq could incorrectly identify certain blocks as constant generators. This
would only occur if a sequential netlist primitive has an internal state which evolves completely independently
of any data input (e.g. a hardened LFSR block, embedded thermal sensor).

Default: comb_seq

——sweep_dangling primary ios {on | off}
Controls whether the circuits dangling primary inputs and outputs (i.e. those who do not drive, or are not driven
by anything) are swept and removed from the netlist.

Disabling sweeping of primary inputs/outputs can improve the matching between the input and post-synthesis
netlists. This is often useful when performing formal verification.

See also:
—-—sweep_constant_primary_outputs
Default: on

——sweep_dangling nets {on | off}
Controls whether dangling nets (i.e. those who do not drive, or are not driven by anything) are swept and
removed from the netlist.

Default: on

——sweep_dangling blocks {on | off}
Controls whether dangling blocks (i.e. those who do not drive anything) are swept and removed from the netlist.

Default: on

—--sweep_constant_primary outputs {on | off}
Controls whether primary outputs driven by constant values are swept and removed from the netlist.

See also:
—-—sweep_dangling primary_10S
Default: of £

——netlist_verbosity <int>
Controls the verbosity of netlist processing (constant generator detection, swept netlist components). High
values produce more detailed output.

Default: 1

4.2. Command-line Options 135

Verilog-to-Routing Documentation, Release 8.1.0-dev

Packing Options

AAPack is the packing algorithm built into VPR. AAPack takes as input a technology-mapped blif netlist consisting
of LUTs, flip-flops, memories, mulitpliers, etc and outputs a .net formatted netlist composed of more complex logic
blocks. The logic blocks available on the FPGA are specified through the FPGA architecture file. For people not
working on CAD, you can probably leave all the options to their default values.

——connection_driven_clustering {on | off}
Controls whether or not AAPack prioritizes the absorption of nets with fewer connections into a complex logic
block over nets with more connections.

Default: on

—-allow_unrelated clustering {on | off | auto}
Controls whether primitives with no attraction to a cluster may be packed into it.

Unrelated clustering can increase packing density (decreasing the number of blocks required to implement the
circuit), but can significantly impact routability.

When set to auto VPR automatically decides whether to enable unrelated clustring based on the targetted
device and achieved packing density.

Default: auto

——alpha_clustering <float>
A parameter that weights the optimization of timing vs area.

A value of 0 focuses solely on area, a value of 1 focuses entirely on timing.
Default: 0.75

——beta_clustering <float>
A tradeoff parameter that controls the optimization of smaller net absorption vs. the optimization of signal
sharing.

A value of 0 focuses solely on signal sharing, while a value of 1 focuses solely on absorbing smaller nets into a
cluster. This option is meaningful only when connection_driven_clustering is on.

Default: 0.9

--timing_driven_clustering {on|off}
Controls whether or not to do timing driven clustering

Default: on

——cluster_seed_type {blend | timing | max_inputs}
Controls how the packer chooses the first primitive to place in a new cluster.

timing means that the unclustered primitive with the most timing-critical connection is used as the seed.
max_inputs means the unclustered primitive that has the most connected inputs is used as the seed.

blend uses a weighted sum of timing criticality, the number of tightly coupled blocks connected to the primi-
tive, and the number of its external inputs.

max_pins selects primitives with the most number of pins (which may be used, or unused).
max_input_pins selects primitives with the most number of input pins (which may be used, or unused).

blend2 An alternative blend formulation taking into account both used and unused pin counts, number of
tightly coupled blocks and criticality.

Default: blend? if timing_driven_clustering is on; max_inputs otherwise.

136 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

——clustering_pin_feasibility_ filter {on | off}
Controls whether the pin counting feasibility filter is used during clustering. When enabled the clustering engine
counts the number of available pins in groups/classes of mutually connected pins within a cluster. These counts
are used to quickly filter out candidate primitives/atoms/molecules for which the cluster has insufficient pins to
route (without performing a full routing). This reduces packing run-time.

Default: on

—--balance_block_ type utilization {on, off, auto}
Controls how the packer selects the block type to which a primitive will be mapped if it can potentially map to
multiple block types.
* on : Try to balance block type utilization by picking the block type with the (currenty) lowest utilization.
* off : Do not try to balance block type utilization
e auto: Dynamically enabled/disabled (based on density)
Default: auto

——target_ext_pin_util { auto | <float> | <float>,<float> | <string>:<float> | <string>:<fl
Sets the external pin utilization target (fraction between 0.0 and 1.0) during clustering. This determines how
many pin the clustering engine will aim to use in a given cluster before closing it and opening a new cluster.

Setting this to 1.0 guides the packer to pack as densely as possible (i.e. it will keep adding molecules to the
cluster until no more can fit). Setting this to a lower value will guide the packer to pack less densely, and instead
creating more clusters. In the limit setting this to 0.0 will cause the packer to create a new cluster for each
molecule.

Typically packing less densely improves routability, at the cost of using more clusters.

This option can take several different types of values:
* auto VPR will automatically determine appropriate target utilizations.
e <float> specifies the target input pin utilization for all block types.

For example:

— 0.7 specifies that all blocks should aim for 70% input pin utilization.
* <float>, <float> specifies the target input and output pin utilizations respectively for all block types.

For example:

- 0.7,0.9 specifies that all blocks should aim for 70% input pin utilization, and 90%
output pin utilization.
* <string>:<float> and <string>:<float>, <float> specify the target pin utilizations for a
specific block type (as above).

For example:
— clb: 0.7 specifies that only c1b type blocks should aim for 70% input pin utilization.

— clb:0.7, 0.9 specifies that only c1b type blocks should aim for 70% input pin uti-
lization, and 90% output pin utilization.

Note: If a pin utilization target is unspecified it defaults to 1.0 (i.e. 100% utilization).

For example:
* 0.7 leaves the output pin utilization unspecified, which is equivalentto 0.7, 1.0.
* clb:0.7,0.9 leaves the pin utilizations for all other block types unspecified, so they will assume a
default utilizationof 1.0, 1.0.

This option can also take multiple space-separated values. For example:

4.2. Command-line Options 137

Verilog-to-Routing Documentation, Release 8.1.0-dev

--target_ext_pin_util clb:0.5 dsp:0.9,0.7 0.8

would specify that c1b blocks use a target input pin utilization of 50%, dsp blocks use a targets of 90% and
70% for inputs and outputs respectively, and all other blocks use an input pin utilization target of 80%.

Note: This option is only a guideline. If a molecule (e.g. a carry-chain with many inputs) would not otherwise
fit into a cluster type at the specified target utilization the packer will fallback to using all pins (i.e. a target
utilization of 1. 0).

Note: This option requires ——clustering pin_feasibility_filter tobe enabled.

Default: auto

——pack_prioritize_transitive_connectivity {on | off}
Controls whether transitive connectivity is prioritized over high-fanout connectivity during packing.

Default: on

—-pack_high_fanout_threshold {auto | <int> | <string>:<int>}
Defines the threshold for high fanout nets within the packer.

This option can take several different types of values:
e auto VPR will automatically determine appropriate thresholds.
e <int> specifies the fanout threshold for all block types.

For example:

— 64 specifies that a threshold of 64 should be used for all blocks.
* <string>:<float> specifies the the threshold for a specific block type.

For example:

— clb: 16 specifies that c1b type blocks should use a threshold of 16.
This option can also take multiple space-separated values. For example:

——pack_high_fanout_threshold 128 clb:16

would specify that c1b blocks use a threshold of 16, while all other blocks (e.g. DSPs/RAMs) would use a
threshold of 128.

Default: auto

——pack_transitive_fanout_threshold <int>
Packer transitive fanout threshold.

Default: 4

——-pack_feasible_block_array size <int>
This value is used to determine the max size of the priority queue for candidates that pass the early filter legality
test but not the more detailed routing filter.

Default: 30

—-pack_verbosity <int>
Controls the verbosity of clustering output. Larger values produce more detailed output, which may be useful
for debugging architecture packing problems.

Default: 2

138 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Placer Options

The placement engine in VPR places logic blocks using simulated annealing. By default, the automatic annealing
schedule is used [BRM99][BR97b]. This schedule gathers statistics as the placement progresses, and uses them to
determine how to update the temperature, when to exit, etc. This schedule is generally superior to any user-specified
schedule. If any of init_t, exit_t or alpha_t is specified, the user schedule, with a fixed initial temperature, final
temperature and temperature update factor is used.

See also:
Timing-Driven Placer Options

—-seed <int>
Sets the initial random seed used by the placer.

Default: 1

——enable_timing computations {on | off}
Controls whether or not the placement algorithm prints estimates of the circuit speed of the placement it gener-
ates. This setting affects statistics output only, not optimization behaviour.

Default: on if timing-driven placement is specified, of £ otherwise.

——inner num <float>
The number of moves attempted at each temperature is inner_num * num_blocks”(4/3) in the circuit. The
number of blocks in a circuit is the number of pads plus the number of clbs. Changing inner_num is the best
way to change the speed/quality tradeoff of the placer, as it leaves the highly-efficient automatic annealing
schedule on and simply changes the number of moves per temperature.

Specifying ~inner_num 10 will slow the placer by a factor of 10 while typically improving placement quality
only by 10% or less (depends on the architecture). Hence users more concerned with quality than CPU time
may find this a more appropriate value of inner_num.

Default: 1.0

——init_t <float>
The starting temperature of the anneal for the manual annealing schedule.

Default: 100.0

——exit_t <float>
The manual anneal will terminate when the temperature drops below the exit temperature.

Default: 0.01

—-alpha_t <float>
The temperature is updated by multiplying the old temperature by alpha_t when the manual annealing schedule
is enabled.

Default: 0.8

——fix pins {free | random | <file.pads>}
Controls how the placer handles I/O pads during placement.
» free: The placer can move I/O locations to optimize the placement.
* random: Fixes I/O pads to arbitrary locations and does not allow the placer to move them during the
anneal (models the effect of poor board-level I/O constraints).
e <file.pads>: A path to a file listing the desired location of each I/O block in the netlist.
This pad location file is in the same format as a normal placement file, but only specifies the locations of I/O
pads, rather than the locations of all blocks.

Default: free.

4.2. Command-line Options 139

Verilog-to-Routing Documentation, Release 8.1.0-dev

——place_algorithm {bounding box | path_timing_driven}
Controls the algorithm used by the placer.

bounding_box focuses purely on minimizing the bounding box wirelength of the circuit.
path_timing_driven focuses on minimizing both wirelength and the critical path delay.
Default: path_timing_driven

—--place_chan_width <int>
Tells VPR how many tracks a channel of relative width 1 is expected to need to complete routing of this circuit.
VPR will then place the circuit only once, and repeatedly try routing the circuit as usual.

Default: 100

—--place_rlim escape <float>
The fraction of moves which are allowed to ignore the region limit. For example, a value of 0.1 means 10% of
moves are allowed to ignore the region limit.

Default: 0.0

Timing-Driven Placer Options

The following options are only valid when the placement engine is in timing-driven mode (timing-driven placement is
used by default).

—-—timing_tradeoff <float>
Controls the trade-off between bounding box minimization and delay minimization in the placer.

A value of 0 makes the placer focus completely on bounding box (wirelength) minimization, while a value of 1
makes the placer focus completely on timing optimization.

Default: 0.5

—-—recompute_crit_iter <int>
Controls how many temperature updates occur before the placer performs a timing analysis to update its estimate
of the criticality of each connection.

Default: 1

——inner_loop_recompute_divider <int>
Controls how many times the placer performs a timing analysis to update its criticality estimates while at a
single temperature.

Default: 0

—--td_place_exp_first <float>
Controls how critical a connection is considered as a function of its slack, at the start of the anneal.

If this value is 0, all connections are considered equally critical. If this value is large, connections with small
slacks are considered much more critical than connections with small slacks. As the anneal progresses, the
exponent used in the criticality computation gradually changes from its starting value of td_place_exp_first to
its final value of ——td _place exp last.

Default: 1.0

—--td_place_exp_ last <float>
Controls how critical a connection is considered as a function of its slack, at the end of the anneal.

See also:
—-—td_place_exp_first
Default: 8.0

140 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

——place_delay_model {delta, delta_override}
Controls how the timing-driven placer estimates delays.
* delta The router is used to profile delay from various locations in the grid for various differences in
position
e delta_override Like delta but also includes special overrides to ensure effects of direct connects
between blocks are accounted for. This is potentially more accurate but is more complex and depending
on the architecture (e.g. number of direct connects) may increase place run-time.
Default: delta

——place_delay_model_reducer {min, max, median, arithmean, geomean}
When calculating delta delays for the placment delay model how are multiple values combined?

Default: min

—--place_delay offset <float>
A constant offset (in seconds) applied to the placer’s delay model.

Default: 0.0

—--place_delay_ramp_delta_threshold <float>
The delta distance beyond which —place_delay_ramp is applied. Negative values disable the placer delay ramp.

Default: -1

——place_delay_ramp_slope <float>
The slope of the ramp (in seconds per grid tile) which is applied to the placer delay model for delta distance
beyond —-place_delay ramp_delta_threshold.

Default: 0.0e-9

——place_tsu_rel margin <float>
Specifies the scaling factor for cell setup times used by the placer. This effectively controls whether the placer
should try to achieve extra margin on setup paths. For example a value of 1.1 corresponds to requesting 10% %
setup margin.

Default: 1.0

——place_tsu_abs_margin <float>
Specifies an absolute offest added to cell setup times used by the placer. This effectively controls whether
the placer should try to achieve extra margin on setup paths. For example a value of 500e-12 corresponds to
requesting an extra 500ps of setup margin.

Default: 0.0

——post_place_timing report <file>
Name of the post-placement timing report file to generate (not generated if unspecfied).

Router Options

VPR uses a negotiated congestion algorithm (based on Pathfinder) to perform routing.

Note: By default the router performs a binary search to find the minimum routable channel width. To route at a fixed
channel width use ——route chan width.

See also:

Timing-Driven Router Options

4.2. Command-line Options 141

Verilog-to-Routing Documentation, Release 8.1.0-dev

——-max_router iterations <int>
The number of iterations of a Pathfinder-based router that will be executed before a circuit is declared unroute-
able (if it hasn’t routed successfully yet) at a given channel width.

Speed-quality trade-off: reducing this number can speed up the binary search for minimum channel width, but
at the cost of some increase in final track count. This is most effective if -initial_pres_fac is simultaneously
increased. Increase this number to make the router try harder to route heavily congested designs.

Default: 50

—-—first_iter_ pres_fac <float>
Similar to ——initial pres_fac. This sets the present overuse penalty factor for the very first routing
iteration. ——initial_ pres_fac sets it for the second iteration.

Note: A value of 0. 0 causes congestion to be ignored on the first routing iteration.

Default: 0.0

—-initial_pres_fac <float>
Sets the starting value of the present overuse penalty factor.

Speed-quality trade-off: increasing this number speeds up the router, at the cost of some increase in final track
count. Values of 1000 or so are perfectly reasonable.

Default: 0.5

—--pres_fac_mult <float>
Sets the growth factor by which the present overuse penalty factor is multiplied after each router iteration.

Default: 1.3

——acc_fac <float>
Specifies the accumulated overuse factor (historical congestion cost factor).

Default: 1

—-bb_ factor <int>
Sets the distance (in channels) outside of the bounding box of its pins a route can go. Larger numbers slow the
router somewhat, but allow for a more exhaustive search of possible routes.

Default: 3

——base_cost_type {demand_only | delay_normalized | delay_normalized_length | delay_normali:

Sets the basic cost of using a routing node (resource).
* demand_only sets the basic cost of a node according to how much demand is expected for that type of
node.
* delay_normalized is similar to demand_only, but normalizes all these basic costs to be of the
same magnitude as the typical delay through a routing resource.
* delay_normalized_length like delay_normalized, but scaled by routing resource length.
* delay_normalized_frequency like delay_normalized, but scaled inversely by routing re-
source frequency.
* delay_normalized_length_frequency like delay_normalized, but scaled by routing re-
source length and scaled inversely by routing resource frequency.
Default: delay_normalized_length for the timing-driven router and demand_only for the breadth-
first router

—-bend_cost <float>
The cost of a bend. Larger numbers will lead to routes with fewer bends, at the cost of some increase in track
count. If only global routing is being performed, routes with fewer bends will be easier for a detailed router to
subsequently route onto a segmented routing architecture.

142 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Default: 1 if global routing is being performed, O if combined global/detailed routing is being performed.

——route_type {global detailed}
Specifies whether global routing or combined global and detailed routing should be performed.

Default: detailed (i.e. combined global and detailed routing)

——route_chan width <int>
Tells VPR to route the circuit at the specified channel width.

Note: If the channel width is >= 0, no binary search on channel capacity will be performed to find the minimum
number of tracks required for routing. VPR simply reports whether or not the circuit will route at this channel
width.

Default: -1 (perform binary search for minimum routable channel width)

——-min_ route_ chan_ width_ hint <int>
Hint to the router what the minimum routable channel width is.

The value provided is used to initialize the binary search for minimum channel width. A good hint may speed-up
the binary search by avoiding time spent at congested channel widths which are not routable.

The algorithm is robust to incorrect hints (i.e. it continues to binary search), so the hint does not need to be
precise.

This option may ocassionally produce a different minimum channel width due to the different initialization.
See also:
—-—verify binary_ search

——verify binary_ search {on | off}
Force the router to check that the channel width determined by binary search is the minimum.

The binary search ocassionally may not find the minimum channel width (e.g. due to router sub-optimality, or
routing pattern issues at a particular channel width).

This option attempts to verify the minimum by routing at successively lower channel widths until two consecu-
tive routing failures are observed.

—-router_algorithm {breadth_first | timing_driven}
Selects which router algorithm to use.

Warning: The breadth_first router should NOT be used to compare the run-time/quality of
alternate routing algorithms.

Itis inferrior to the t iming_driven router from a circuit speed (2x - 10x slower) and run-time perspective
(takes 10-100x longer on the large benchmarks). The breadth_first router is deprecated and may be
removed in a future release.

The breadth_first router [BRM99] focuses solely on routing a design successfully, while the
timing_driven router [BRM99][MZB20] focuses both on achieving a successful route and achieving good
circuit speed.

The breadth-first router is capable of routing a design using slightly fewer tracks than the timing-driving router
(typically 5% if the timing-driven router uses its default parameters. This can be reduced to about 2% if the
router parameters are set so the timing-driven router pays more attention to routability and less to area). The
designs produced by the timing-driven router are much faster, however, (2x - 10x) and it uses less CPU time to
route.

4.2. Command-line Options 143

Verilog-to-Routing Documentation, Release 8.1.0-dev

Default: timing_driven

—-min_incremental_reroute_fanout <int>
Incrementally re-route nets with fanout above the specified threshold.

This attempts to re-use the legal (i.e. non-congested) parts of the routing tree for high fanout nets, with the aim
of reducing router execution time.

To disable, set value to a value higher than the largest fanout of any net.

Default: 16

Timing-Driven Router Options

The following options are only valid when the router is in timing-driven mode (the default).

——astar_fac <float>
Sets how aggressive the directed search used by the timing-driven router is.

Values between 1 and 2 are reasonable, with higher values trading some quality for reduced CPU time.
Default: 1.2

—--max_criticality <float>
Sets the maximum fraction of routing cost that can come from delay (vs. coming from routability) for any net.

A value of 0 means no attention is paid to delay; a value of 1 means nets on the critical path pay no attention to
congestion.

Default: 0.99

——criticality exp <float>
Controls the delay - routability tradeoff for nets as a function of their slack.

If this value is O, all nets are treated the same, regardless of their slack. If it is very large, only nets on the critical
path will be routed with attention paid to delay. Other values produce more moderate tradeoffs.

Default: 1.0

——router_init_wirelength_abort_threshold <float>
The first routing iteration wirelength abort threshold. If the first routing iteration uses more than this fraction of
available wirelength routing is aborted.

Default: 0.85

——incremental_reroute_delay ripup {on | off | auto}
Controls whether incremental net routing will rip-up (and re-route) a critical connection for delay, even if the
routing is legal. auto enables delay-based rip-up unless routability becomes a concern.

Default: auto

——routing failure_predictor {safe | aggressive | off}
Controls how aggressive the router is at predicting when it will not be able to route successfully, and giving up
early. Using this option can significantly reduce the runtime of a binary search for the minimum channel width.

safe only declares failure when it is extremely unlikely a routing will succeed, given the amount of congestion
existing in the design.

aggressive can further reduce the CPU time for a binary search for the minimum channel width but can
increase the minimum channel width by giving up on some routings that would succeed.

of f disables this feature, which can be useful if you suspect the predictor is declaring routing failure too quickly
on your architecture.

144 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

See also:
—-—-verify_binary_search
Default: safe

——routing budgets_algorithm { disable | minimax | scale_delay }

Warning: Experimental

Controls how the routing budgets are created. Routing budgets are used to guid VPR’s routing algorithm to
consider both short path and long path timing constraints [FBCOS].

disable is used to disable the budget feature. This uses the default VPR and ignores hold time constraints.

minimax sets the minimum and maximum budgets by distributing the long path and short path slacks de-
pending on the the current delay values. This uses the routing cost valleys and Minimax-PERT algorithm
[YLS92][FBCOS].

scale_delay has the minimum budgets set to 0 and the maximum budgets is set to the delay of a net scaled
by the pin criticality (net delay/pin criticality).

Default: disable

—-—-save_routing per_ iteration {on | off}
Controls whether VPR saves the current routing to a file after each routing iteration. May be helpful for debug-

ging.
Default: of £

——congested_routing iteration_threshold CONGESTED_ROUTING_ITERATION_THRESHOLD
Controls when the router enters a high effort mode to resolve lingering routing congestion. Value is the fraction
of max_router_iterations beyond which the routing is deemed congested.

Default: 1.0 (never)

—--route_bb_update {static, dynamic}
Controls how the router’s net bounding boxes are updated:
* static : bounding boxes are never updated

* dynamic: bounding boxes are updated dynamically as routing progresses (may improve
routability of congested designs)

Default: dynamic

——router_high_fanout_threshold ROUTER_HIGH_FANOUT_THRESHOLD
Specifies the net fanout beyond which a net is considered high fanout. Values less than zero disable special
behaviour for high fanout nets.

Default: 64

——router_lookahead {classic, map}
Controls what lookahead the router uses to calculate cost of completing a connection.
* classic: The classic VPR lookahead

* map: A more advanced lookahead which accounts for diverse wire types and their connec-
tivity

Default: classic

4.2. Command-line Options 145

Verilog-to-Routing Documentation, Release 8.1.0-dev

——router_max_convergence_count <float>
Controls how many times the router is allowed to converge to a legal routing before halting. If multiple legal
solutions are found the best quality implementation is used.

Default: 1

——router_reconvergence_cpd threshold <float>
Specifies the minimum potential CPD improvement for which the router will continue to attempt re-convergent
routing.

For example, a value of 0.99 means the router will not give up on reconvergent routing if it thinks a > 1% CPD
reduction is possible.
Default: 0.99

——router_initial timing {all_critical | lookahead}
Controls how criticality is determined at the start of the first routing iteration.
* all_critical: All connections are considered timing critical.

* lookahead: Connection criticalities are determined from timing analysis assuming (best-
case) connection delays as estimated by the router’s lookahead.

Default: a11_critical for the classic ——router lookahead, otherwise lookahead

——router_update_lower_bound delays {on | off}
Controls whether the router updates lower bound connection delays after the 1st routing iteration.

Default: on

—-router_first iter timing report <file>
Name of the timing report file to generate after the first routing iteration completes (not generated if unspecfied).

——router_debug_net <int>

Note: This option is likely only of interest to developers debugging the routing algorithm

Controls which net the router produces detailed debug information for.
* For values >= 0, the value is the net ID for which detailed router debug information should be produced.
* For value == -1, detailed router debug information is produced for all nets.
* For values < -1, no router debug output is produced.

Warning: VPR must have been compiled with VIR_ENABLE_DEBUG_LOGGING on to get any debug
output from this option.

Default: -2

—-router_debug_sink_ rr ROUTER_DEBUG_SINK_RR

Note: This option is likely only of interest to developers debugging the routing algorithm

Controls when router debugging is enabled for the specified sink RR.
* For values >= 0, the value is taken as the sink RR Node ID for which to enable router debug output.
* For values < 0, sink-based router debug output is disabled.

146 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Warning: VPR must have been compiled with VIR_ENABLE_DEBUG_LOGGING on to get any debug
output from this option.

Default: -2

Analysis Options

——full_stats
Print out some extra statistics about the circuit and its routing useful for wireability analysis.

Default: off

—-—gen_post_synthesis_netlist { on | off }
Generates the Verilog and SDF files for the post-synthesized circuit. The Verilog file can be used to perform
functional simulation and the SDF file enables timing simulation of the post-synthesized circuit.

The Verilog file contains instantiated modules of the primitives in the circuit. Currently VPR can generate Ver-
ilog files for circuits that only contain LUTs, Flip Flops, IOs, Multipliers, and BRAMs. The Verilog description
of these primitives are in the primitives.v file. To simulate the post-synthesized circuit, one must include the
generated Verilog file and also the primitives.v Verilog file, in the simulation directory.

See also:
Post-Implementation Timing Simulation

If one wants to generate the post-synthesized Verilog file of a circuit that contains a primitive other than those
mentioned above, he/she should contact the VTR team to have the source code updated. Furthermore to perform
simulation on that circuit the Verilog description of that new primitive must be appended to the primitives.v file
as a separate module.

Default: of £

—--timing_ report_npaths <int>
Controls how many timing paths are reported.

Note: The number of paths reported may be less than the specified value, if the circuit has fewer paths.

Default: 100

——timing report_detail { netlist | aggregated | detailed }
Controls the level of detail included in generated timing reports.

We obtained the following results using the k6_frac_N10_frac_chain_mem32K_40nm.xml architecture and
multiclock.blif circuit.
e netlist: Timing reports show only netlist primitive pins.

For example:

#Path 2
Startpoint: FFC.Q[0] (.latch clocked by clk)
Endpoint : out:outl.outpad[0] (.output clocked by virtual_io_clock)

Path Type : setup

(continues on next page)

4.2. Command-line Options 147

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

clock clk (rise edge)

—000 0.000

clock source latency

—000 0.000

clk.inpad[0] (.input)

—000 0.000

FFC.clk[0] (.latch)

—~042 0.042

FFC.Q[O0] (.latch) [clock-to-output]
—124 0.166
out:outl.outpad[0] (.output)
550 0.717

data arrival time

[0.717

clock virtual_io_clock (rise edge)
—000 0.000
clock source latency

—000 0.000
clock uncertainty
000 0.000
output external delay
000 0.000
data required time
— 0.000
B
data required time
— 0.000
data arrival time
— -0.717
B
slack (VIOLATED)

— -0.717

0.

For example:

* aggregated: Timing reports show netlist pins, and an aggregated summary of intra-block and inter-
block routing delays.

#Path 2

Startpoint: FFC.Q[0] (.latch at (3,3)
out:outl.outpad[0] (.output at (3,4) clocked by virtual_

Endpoint
—~io_clock)
Path Type : setup

Point
>Incr Path
clock clk (rise edge)
—000 0.000
clock source latency
000 0.000
clk.inpad[0] (.input at (4,2))
—000 0.000

clocked by clk)

(continues on next page)

148

Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

| (intra 'io' routing) 0.
—042 0.042

| (inter-block routing) 0.
—000 0.042

| (intra 'clb' routing) 0.
000 0.042

FFC.clk[0] (.latch at (3,3)) 0.
—000 0.042

| (primitive '.latch' Tcg_max) 0.
124 0.166

FFC.Q[O0] (.latch at (3,3)) [clock-to-output] 0.
000 0.166

| (intra 'clb' routing) 0.
045 0.211

| (inter-block routing) 0.
—491 0.703

| (intra 'io' routing) 0.
014 0.717

out:outl.outpad[0] (.output at (3,4)) 0.
—000 0.717

data arrival time .
— 0.717

clock virtual_io_clock (rise edge) 0.
—000 0.000

clock source latency 0.
000 0.000

clock uncertainty 0.
—000 0.000

output external delay 0.
—000 0.000

data required time L
- 0.000

data required time

— 0.000
data arrival time .
o -0.717
slack (VIOLATED) .
< -0.717

where each line prefixed with | (pipe character) represent a sub-delay of an edge within the
timing graph.

For instance:

FFC.Q[O0] (.latch at (3,3)) [clock-to-output] 0.
—000 0.166
| (intra 'clb' routing) 0.
045 0.211
| (inter-block routing) 0.
491 0.703
| (intra 'io' routing) 0.
—014 0.717

(continues on next page)

4.2. Command-line Options

149

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

out:outl.outpad[0] (.output at (3,4)) 0.
000 0.717

indicates that between the netlist pins FFC.Q[0] and out :outl.outpad[0] there are
delays of:

— 45 ps from the . 1latch output pin to an output pin of a c1b block,
— 491 ps through the general inter-block routing fabric, and
— 14 ps from the input pin of a 10 block to . output.

Also note that a connection between two pins can be contained within the same c1b block,
and does not use the general inter-block routing network. As an example from a completely
different circuit-architecture pair:

nll68.out[0] (.names) 0.
000 0.902
| (intra 'clb' routing) 0.
—000 0.902
top”finish FF_NODE.D[0] (.latch) 0.
—000 0.902

* detailed: Like aggregated, the timing reports show netlist pins, and an aggregated summary of
intra-block. In addition, it includes a detailed breakdown of the inter-block routing delays.

It is important to note that detailed timing report can only list the components of a non-global net, oth-
erwise, it reports inter-block routing as well as an incremental delay of 0, just as in the aggregated and
netlist reports.

For example:

#Path 2

Startpoint: FFC.Q[O0] (.latch at (3,3) clocked by clk)

Endpoint : out:outl.outpad[0] (.output at (3,4) clocked by virtual_
—1o_clock)

Path Type : setup

Point o
—Incr Path

clock clk (rise edge) 0.
—000 0.000

clock source latency 0.
—000 0.000

clk.inpad[0] (.input at (4,2)) 0.
—000 0.000

| (intra 'io' routing) 0.
042 0.042

| (inter-block routing:global net) 0.
—000 0.042

| (intra 'clb' routing) 0.
—000 0.042

FFC.clk[0] (.latch at (3,3)) 0.
—000 0.042

| (primitive '.latch' Tcg_max) 0.
—124 0.166

FFC.Q[O0] (.latch at (3,3)) [clock-to-output] 0.
—000 0.1060 (continues on next page)

150 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

| (intra 'clb' routing) 0.
—045 0.211

| (OPIN:1479 side:TOP (3,3)) 0.
—000 0.211

| (CHANX:2073 unnamed_segment_0 length:1 (3,3)->(2,3)) 0.
095 0.306

| (CHANY:2139 unnamed_segment_0 length:0 (1,3)->(1,3)) 0.
—075 0.382

| (CHANX:2040 unnamed_segment_0 length:1 (2,2)->(3,2)) 0.
—095 0.476

| (CHANY:2166 unnamed_segment_0 length:0 (2,3)->(2,3)) 0.
—076 0.552

| (CHANX:2076 unnamed_segment_0 length:0 (3,3)->(3,3)) 0.
078 0.630

| (IPIN:1532 side:BOTTOM (3,4)) 0.
—072 0.703

| (intra 'io' routing) 0.
—014 0.717

out:outl.outpad[0] (.output at (3,4)) 0.
—000 0.717

data arrival time

— 0.717

clock virtual_io_clock (rise edge) 0.
—000 0.000

clock source latency 0.
000 0.000

clock uncertainty 0.
—000 0.000

output external delay 0.
—000 0.000

data required time

- 0.000

data required time
— 0.000
data arrival time
— -0.717

slack (VIOLATED)
. -0.717

where each line prefixed with | (pipe character) represent a sub-delay of an edge within the
timing graph. In the detailed mode, the inter-block routing has now been replaced by the net
components.

For OPINS and IPINS, this is the format of the name: [
(ROUTING_RESOURCE_NODE_TYPE:ROUTING_RESOURCE_NODE_ID side:SIDE
(START_COORDINATES) —> (END_COORDINATES))

For CHANX and CHANY, this is the format of the name: [
(ROUTING_RESOURCE_NODE_TYPE:ROUTING_RESOURCE_NODE_ID
SEGMENT_NAMElength:LENGTH(START_COORDINATES)—>(END_COORDINATES))

Here is an example of the breakdown:

4.2. Command-line Options

151

Verilog-to-Routing Documentation, Release 8.1.0-dev

FFC.Q[O0] (.latch at (3,3)) [clock-to-output] 0.
—000 0.166
| (intra 'clb' routing) 0.
045 0.211
| (OPIN:1479 side:TOP (3,3)) 0.
—000 0.211
| (CHANX:2073 unnamed_segment_0 length:1 (3,3)->(2,3)) 0.
—095 0.306
| (CHANY:2139 unnamed_segment_0 length:0 (1,3)->(1,3)) 0.
—075 0.382
| (CHANX:2040 unnamed_segment_0 length:1 (2,2)->(3,2)) 0.
—095 0.476
| (CHANY:2166 unnamed_segment_0 length:0 (2,3)->(2,3)) 0.
—076 0.552
| (CHANX:2076 unnamed_segment_0 length:0 (3,3)->(3,3)) 0.
—078 0.630
| (IPIN:1532 side:BOTTOM (3,4)) 0.
—~072 0.703
| (intra 'io' routing) 0.
014 0.717
out:outl.outpad[0] (.output at (3,4)) 0.
—000 0.717

indicates that between the netlist pins FFC.Q[0] and out :outl.outpad[0] there are
delays of:

— 45 ps from the . Latch output pin to an output pin of a c1b block,
— 0 ps from the c1b output pin to the CHANX : 2073 wire,

— 95 ps from the CHANX: 2073 to the CHANY : 2139 wire,

— 75 ps from the CHANY : 2139 to the CHANX : 2040 wore,

— 95 ps from the CHANX : 2040 to the CHANY : 2166 wire,

— 76 ps from the CHANY : 2166 to the CHANX: 2076 wire,

— 78 ps from the CHANX : 2076 to the input pin of a io block,

— 14 psinput pin of a io block to . output.

In the initial description we referred to the existence of global nets, which also occur in this

net:

clk.inpad[0] (.input at (4,2)) 0.
—000 0.000

| (intra 'io' routing) 0.
042 0.042

| (inter-block routing:global net) 0.
—000 0.042

| (intra 'clb' routing) 0.
—000 0.042

FFC.clk[0] (.latch at (3,3)) 0.
—000 0.042

Global nets are unrouted nets, and their route trees happen to be null.

Finally, is interesting to note that the consecutive channel components may not seem to con-
nect. There are two types of occurences:

152 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

1. The preceding channel’s ending coordinates extend past the following channel’s starting
coordinates (example from a different path):

| (chany:2113 unnamed_segment_0 length:2 (1, 3) -> (1, 1)) 0.
—~116 0.405
| (chanx:2027 unnamed_segment_0 length:0 (1, 2) -> (1, 2)) 0.
—078 0.482

It is possible that by opening a switch between (1,2) to (1,1), CHANY:2113 actually only
extends from (1,3) to (1,2).

2. The preceding channel’s ending coordinates have no relation to the following channel’s
starting coordinates. There is no logical contradiction, but for clarification, it is best to
see an explanation of the VPR coordinate system. The path can also be visualized by
VPR graphics, as an illustration of this point:

Fig. 4.1 shows the routing resources used in Path #2 and their locations on the FPGA.

1. The signal emerges from near the top-right corner of the block to_FFC (OPIN:1479)
and joins the topmost horizontal segment of length 1 (CHANX:2073).

2. The signal proceeds to the left, then connects to the outermost, blue vertical segment of
length 0 (CHANY:2139).

3. The signal continues downward and attaches to the horizontal segment of length 1
(CHANX:2040).

4. Of the aforementioned horizontal segment, after travelling one linear unit to the right,
the signal jumps on a vertical segment of length 0 (CHANY:2166).

5. The signal travels upward and promptly connects to a horizontal segment of length 0
(CHANX:2076).

6. This segment connects to the green destination io (3,4).
* debug: Like detailed, but includes additional VPR internal debug information such as timing graph
node IDs (tnode) and routing SOURCE/SINK nodes.
Default: netlist

——echo_dot_timing graph_node { string | int }
Controls what subset of the timing graph is echoed to a GraphViz DOT file when vpr --echo_file is
enabled.

Value can be a string (corresponding to a VPR atom netlist pin name), or an integer representing a timing graph
node ID. Negative values mean the entire timing graph is dumped to the DOT file.

Default: -1

--timing report_skew { on | off }
Controls whether clock skew timing reports are generated.

Default: of £

4.2. Command-line Options 153

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 4.1: Ilustration of Path #2 with insight into the coordinate system.

Chapter 4. VPR

154

Verilog-to-Routing Documentation, Release 8.1.0-dev

Power Estimation Options

The following options are used to enable power estimation in VPR.
See also:
Power Estimation for more details.

——power
Enable power estimation

Default: of £

—-—tech_properties <file>
XML File containing properties of the CMOS technology (transistor capacitances, leakage currents, etc). These
can be found at $VTR_ROOT/vtr_flow/tech/, or can be created for a user-provided SPICE technology
(see Power Estimation).

——activity file <file>
File containing signal activites for all of the nets in the circuit. The file must be in the format:

<net namel> <signal probability> <transition density>
<net name2> <signal probability> <transition density>

Instructions on generating this file are provided in Power Estimation.

4.2.3 Command-line Auto Completion

To simplify using VPR on the command-line you can use the dev/vpr_bash_completion. sh script, which will
enable TAB completion for VPR commandline arguments (based on the output of vpr -h).

Simply add:

’ source SVTR_ROOT/dev/vpr_bash_completion.sh

to your .bashrc. $VTR_ROOT refers to the root of the VIR source tree on your system.

4.3 Graphics

VPR includes easy-to-use graphics for visualizing both the targetted FPGA architecture, and the circuit VPR has
implementation on the architecture.

4.3.1 Enabling Graphics
Compiling with Graphics Support

The build system will attempt to build VPR with graphics support by default.

If all the required libraries are found the build system will report:

—— EZGL: graphics enabled

If the required libraries are not found cmake will report:

4.3. Graphics 155

Verilog-to-Routing Documentation, Release 8.1.0-dev

—— EZGL: graphics disabled

and list the missing libraries:

—-— EZGL: Failed to find required X11 library (on debian/ubuntu try 'sudo apt-get,
—install libxll-dev' to install)

-— EZGL: Failed to find required Xft library (on debian/ubuntu try 'sudo apt-get,
—install libxft-dev' to install)

-— EZGL: Failed to find required fontconfig library (on debian/ubuntu try 'sudo apt-
—get install fontconfig' to install)

-— EZGL: Failed to find required cairo library (on debian/ubuntu try 'sudo apt-get
—install libcairo2-dev' to install)

Enabling Graphics at Run-time

When running VPR provide vpr —-disp on to enable graphics.

Saving Graphics at Run-time

When running VPR provide vpr —--save graphics on to enable graphics.

A graphical window will now pop up when you run VPR.

4.3.2 Navigation

Click on Zoom-Fit buttons to zoom the view. Click and drag the mouse wheel to pan the view, or scroll the mouse
wheel to zoom in and out. Click on the Window, then on the diagonally opposite corners of a box, to zoom in on a
particular area.

Click on Save to save the image on screen to PDF, PNG, or SVG file.

Proceed tells VPR to continue with the next step in placing and routing the circuit.

Note: Menu buttons will be greyed out when they are not selectable (e.g. VPR is working).

4.3.3 Visualizing Placement

By default VPR’s graphics displays the FPGA floorplan (block grid) and current placement.

Fig. 4.2: Placement with macros (carry chains) highlighted

If the Placement Macros drop down is set, any placement macros (e.g. carry chains, which require specific relative
placements between some blocks) will be highlighted.

156 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

4.3.4 Visualizing Netlist Connectivity

The Toggle Nets drop-down list toggles the nets in the circuit visible/invisible.

When a placement is being displayed, routing information is not yet known so nets are simply drawn as a “star;” that
is, a straight line is drawn from the net source to each of its sinks. Click on any clb in the display, and it will be
highlighted in green, while its fanin and fanout are highlighted in blue and red, respectively. Once a circuit has been
routed the true path of each net will be shown.

Fig. 4.3: Logical net connectivity during placement

If the nets routing are shown, click on a clb or pad to highlight its fanins and fanouts, or click on a pin or channel wire
to highlight a whole net in magenta. Multiple nets can be highlighted by pressing ctrl + mouse click.

4.3.5 Visualizing the Critical Path

During placement and routing you can click on the Crit. Path drop-down menu to visualize the critical path. Each
stage between primitive pins is shown in a different colour. Cliking the Crit. Path button again will toggle through
the various visualizations: * During placement the critical path is shown only as flylines. * During routing the critical
path can be shown as both flylines and routed net connections.

Fig. 4.4: Critical Path flylines during placement and routing

4.3.6 Visualizing Routing Architecture

When a routing is on-screen, clicking on Toggle RR lets you to choose between various views of the routing resources
available in the FPGA.

Fig. 4.5: Routing Architecture Views

The routing resource view can be very useful in ensuring that you have correctly described your FPGA in the architec-
ture description file — if you see switches where they shouldn’t be or pins on the wrong side of a clb, your architecture
description needs to be revised.

Wiring segments are drawn in black, input pins are drawn in sky blue, and output pins are drawn in pink. Sinks are
drawn in dark slate blue, and sources in plum. Direct connections between output and input pins are shown in medium
purple. Connections from wiring segments to input pins are shown in sky blue, connections from output pins to wiring
segments are shown in pink, and connections between wiring segments are shown in green. The points at which wiring
segments connect to clb pins (connection box switches) are marked with an x.

Switch box connections will have buffers (triangles) or pass transistors (circles) drawn on top of them, depending on
the type of switch each connection uses. Clicking on a clb or pad will overlay the routing of all nets connected to
that block on top of the drawing of the FPGA routing resources, and will label each of the pins on that block with its
pin number. Clicking on a routing resource will highlight it in magenta, and its fanouts will be highlighted in red and
fanins in blue. Multiple routing resources can be highlighted by pressing ctrl + mouse click.

4.3. Graphics 157

Verilog-to-Routing Documentation, Release 8.1.0-dev

4.3.7 Visualizing Routing Congestion

When a routing is shown on-screen, clicking on the Congestion drop-down menu will show a heat map of any overused
routing resources (wires or pins). Lighter colours (e.g. yellow) correspond to highly overused resources, while darker
colours (e.g. blue) correspond to lower overuse. The overuse range shown at the bottom of the window.

Fig. 4.6: Routing Congestion during placement and routing

4.3.8 Visualizing Routing Utilization

When a routing is shown on-screen, clicking on the Routing Util drop-down menu will show a heat map of routing
wire utilization (i.e. fraction of wires used in each channel). Lighter colours (e.g. yellow) correspond to highly utilized
channels, while darker colours (e.g. blue) correspond to lower utilization.

Fig. 4.7: Routing Utilization during placement and routing

4.3.9 Button Description Table

But- Stages Functionalities Detailed Descriptions
tons
Blk Place- Controls depth of sub-blocks shown Click multiple times to show more details; Click
Inter- | ment/Royting to reset when reached maximum level of detail
nal
Blk Place- Visualizes block pin utilization Click multiple times to visualize all block pin
Pin ment/Routing utilization, input block pin utilization, or output
Util block pin utilization
Cong. | Rout- Visualizes the congestion costs of routing
Cost | ing resouces
Con- | Rout- Visualizes a heat map of overused routing
ges- ing resources
tion
Crit. Place- Visualizes the critical path of the circuit
Path | ment/Royting
Place | Place- Visualizes placement macros
Macrog ment/Royting
Route | Rout- Visualizes net bounding boxes one by one | Click multiple times to sequence through the net
BB ing being shown
Router| Rout- Visualizes the router costs of different rout-
Cost | ing ing resources
Rout- | Rout- Visualizes routing channel utilization with
ing ing colors indicating the fraction of wires used
Util within a channel
Tog- | Place- Visualizes the nets in the circuit Click multiple times to set the nets to be visible
gle ment/Routing / invisible
Nets
Tog- | Place- Visualizes different views of the routing re- | Click multiple times to switch between routing
gle ment/Routis@urces resources available in the FPGA
RR
158 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

4.4 Timing Constraints

VPR supports setting timing constraints using Synopsys Design Constraints (SDC), an industry-standard format for
specifying timing constraints.

VPR’s default timing constraints are explained in Default Timing Constraints. The subset of SDC supported by VPR
is described in SDC Commands. Additional SDC examples are shown in SDC Examples.

See also:

The Primitive Timing Modelling Tutorial which covers how to describe the timing characteristics of architecture prim-
itives.

4.4.1 Default Timing Constraints

If no timing constriants are specified, VPR assumes default constraints based on the type of circuit being analyzed.

Combinational Circuits

Constrain all I/Os on a virtual clock virtual_io_clock, and optimize this clock to run as fast as possible.

Equivalent SDC File:

create _clock -period 0 —-name virtual_io_clock
input_delay -clock virtual_io_clock -max 0 [get ports {*}]

borts {x}]

set_output_delay -clock virtual_io_clock —max 0 [get r

Single-Clock Circuits

Constrain all I/Os on the netlist clock, and optimize this clock to run as fast as possible.

Equivalent SDC File:

create_clock —-period 0 =*

: _input_delay -clock * -max 0 [get_ports {x}]
set_output_delay -clock x -max 0 [get_ports {x}]

Multi-Clock Circuits

Constrain all I/Os a virtual clock virtual_io_clock. Does not analyse paths between netlist clock domains, but
analyses all paths from I/Os to any netlist domain. Optimizes all clocks, including I/O clocks, to run as fast as possible.

Warning: By default VPR does not analyze paths between netlist clock domains.

Equivalent SDC File:

create_clock —-period 0 =

e_clock —-period 0 —-name virtual_io_clock

clock _groups —exclusive —group {clk} —group {clk2}
_input_delay —-clock virtual_io_clock -max 0 [get_ports {x}]
set_output_delay -clock virtual_io_clock -max 0 [get_ports {x}]

4.4. Timing Constraints 159

Verilog-to-Routing Documentation, Release 8.1.0-dev

Where c1k and c1k2 are the netlist clocks in the design. This is similarily extended if there are more than two netlist
clocks.

4.5 SDC Commands

The following subset of SDC syntax is supported by VPR.

4.5.1 create_clock

Creates a netlist or virtual clock.

Assigns a desired period (in nanoseconds) and waveform to one or more clocks in the netlist (if the —name option
is omitted) or to a single virtual clock (used to constrain input and outputs to a clock external to the design). Netlist
clocks can be referred to using regular expressions, while the virtual clock name is taken as-is.

Example Usage:

#Create a netlist clock
create_clock —-period <float> <netlist clock list or regexes>

#Create a virtual clock
create_clock —-period <float> -name <virtual clock name>

#Create a netlist clock with custom waveform/duty-cycle
create_clock -period <float> -waveform {rising edge falling edge} <netlist clock list,
—0r regexes>

Omitting the waveform creates a clock with a rising edge at 0 and a falling edge at the half period, and is equivalent
to using ~waveform {0 <period/2>}.Non-50% duty cycles are supported but behave no differently than 50%
duty cycles, since falling edges are not used in analysis. If a virtual clock is assigned using a create_clock command,
it must be referenced elsewhere in a set_input_delay or set_output_delay constraint.

create_clock

-period <float>
Specifies the clock period.

Required: Yes

-waveform {<float> <float>}
Overrides the default clock waveform.

The first value indicates the time the clock rises, the second the time the clock falls.
Required: No
Default: 50% duty cycle (i.e. —-waveform {0 <period/2>}).

—-name <string>
Creates a virtual clock with the specified name.

Required: No

<netlist clock list or regexes>
Creates a netlist clock

Required: No

160 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Note: One of —name or <netlist clock list or regexes> must be specified.

Warning: If a netlist clock is not specified with a create clock command, paths to and from that clock
domain will not be analysed.

4.5.2 set_clock_groups

Specifies the relationship between groups of clocks. May be used with netlist or virtual clocks in any combination.

Since VPR supports only the —exclusive option, a set_clock_groups constraint is equivalent to a
set_false_path constraint (see below) between each clock in one group and each clock in another.

For example, the following sets of commands are equivalent:

#Do not analyze any timing paths between clk and clk2, or between
#clk and clk3

set_clock groups -exclusive -group {clk} —group {clk2 clk3}

set_false path —-from [get_clocks {clk}] -to [get_clocks {clk2 clk3}]
set_false_path —from [get_clocks {clk2 clk3}] -to [get_clocks {clk}]

set_clock_groups

—exclusive
Indicates that paths between clock groups should not be analyzed.

Required: Yes

Note: VPR currently only supports exclusive clock groups

—group {<clock list or regexes>}
Specifies a group of clocks.

Note: At least 2 groups must be specified.

Required: Yes

4.5. SDC Commands 161

Verilog-to-Routing Documentation, Release 8.1.0-dev

4.5.3 set_false_path

Cuts timing paths unidirectionally from each clock in —from to each clock in —to. Otherwise equivalent to
set_clock_groups.

Example Usage:

#Do not analyze paths launched from clk and captured by clk2 or clk3
set_false path —-from [get_clocks {clk}] -to [get_clocks {clk2 clk3}]

#Do not analyze paths launched from clk2 or clk3 and captured by clk
set_false path —-from [get_clocks {clk2 clk3}] -to [get_clocks {clk}]

Note: False paths are supported between entire clock domains, but not between individual registers.

set_false_path

—from [get_clocks <clock list or regexes>]
Specifies the source clock domain(s).

Required: No
Default: All clocks

-to [get_clocks <clock list or regexes>]
Specifies the sink clock domain(s).

Required: No
Default: All clocks

4.5.4 set_max_delay/set_min_delay

Overrides the default setup (max) or hold (min) timing constraint calculated using the information from
create_clock with a user-specified delay.

Example Usage:

#Specify a maximum delay of 17 from input_clk to output_clk
set_max_delay 17 —-from [get_clocks {input_clk}] -to [get_clocks {output_clk}]

#Specify a minimum delay of 2 from input_clk to output_clk
set_min_delay 2 —-from [get_clocks {input_clk}] -to [get_clocks {output_clk}]

Note: Max/Min delays are supported between entire clock domains, but not between individual netlist elements.

set_max_delay/set_min_delay

<delay>
The delay value to apply.

Required: Yes

162 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

—from [get_clocks <clock list or regexes>]
Specifies the source clock domain(s).

Required: No
Default: All clocks

-to [get_clocks <clock list or regexes>]
Specifies the sink clock domain(s).

Required: No
Default: All clocks

4.5.5 set_multicycle_path

Sets how many clock cycles elapse between the launch and capture edges for setup and hold checks.

The default the setup mutlicycle value is 1 (i.e. the capture setup check is performed against the edge one cycle after
the launch edge).

The default hold multicycle is one less than the setup multicycle path (e.g. the capture hold check occurs in the same
cycle as the launch edge for the default setup multicycle).

Example Usage:

#Create a 4 cycle setup check, and 0 cycle hold check from clkA to clkB
set_multicycle_path —-from [get_clocks {clkA}] -to [get_clocks {clkB}] 4

#Create a 3 cycle setup check from clk to clk2
Note that this moves the default hold check to be 2 cycles
set_multicycle_path -setup —-from [get_clocks {clk}] -to [get_clocks {clk2}] 3

#Create a 0 cycle hold check from clk to clk2

Note that this moves the default hold check back to it's original

position before the previous setup setup_multicycle_path was applied
set_multicycle_path -hold -from [get_clocks {clk}] -to [get_clocks {clk2}] 2

#Create a multicycle to a specific pin
set_multicycle_path -to [get_pins {my_inst.in\[O0\]}] 2

Note: Multicycles are supported between entire clock domains, and ending at specific registers.

set_multicycle_path

—-setup
Indicates that the multicycle-path applies to setup analysis.

Required: No

-hold
Indicates that the multicycle-path applies to hold analysis.

Required: No

—from [get_clocks <clock list or regexes>]
Specifies the source clock domain(s).

Required: No

4.5. SDC Commands 163

Verilog-to-Routing Documentation, Release 8.1.0-dev

Default: All clocks

-to [get_clocks <clock list or regexes>]
Specifies the sink clock domain(s).

Required: No
Default: All clocks

-to [get_pins <pin list or regexes>]
Specifies the sink/capture netlist pins to which the multicycle is applied.

See also:
VPR'’s pin naming convention.
Required: No

<path_multiplier>
The number of cycles that apply to the specified path(s).

Required: Yes

Note: If neither —setup nor ~hold the setup multicycle is set to path_multiplier and the hold multicycle
offset to 0.

Note: Only a single -to option can be specified (either clocks or pins, but not both).

4.5.6 set_input_delay/set_output_delay

Use set_input_delay if you want timing paths from input I/Os analyzed, and set_output_delay if you
want timing paths to output I/Os analyzed.

Note: If these commands are not specified in your SDC, paths from and to I/Os will not be timing analyzed.

These commands constrain each I/O pad specified after get _ports to be timing-equivalent to a register clocked on
the clock specified after —c1ock. This can be either a clock signal in your design or a virtual clock that does not exist
in the design but which is used only to specify the timing of I/Os.

The specified delays are added to I/O timing paths and can be used to model board level delays.

For single-clock circuits, —clock can be wildcarded using = to refer to the single netlist clock, although this is not
supported in standard SDC. This allows a single SDC command to constrain I/Os in all single-clock circuits.

Example Usage:

#Set a maximum input delay of 0.5 (relative to input_clk) on
#ports inl, in2 and in3
set_input_delay -clock input_clk -max 0.5 [get_ports {inl in2 in3}]

#Set a minimum output delay of 1.0 (relative to output_clk) on
#all ports matching starting with 'outx'

set_output_delay —-clock output_clk —-min 1 [get_ports {out=x}]

#Set both the maximum and minimum output delay to 0.3 for all I/0s

(continues on next page)

164 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

#in the design
set_output_delay -clock clk2 0.3 [get_ports {=x}]

set_input_delay/set_output_delay

—clock <virtual or netlist clock>
Specifies the virtual or netlist clock the delay is relative to.

Required: Yes

-max
Specifies that the delay value should be treated as the maximum delay.

Required: No

-